

German Protestant Institute of Archaeology (GPIA)

¥

Biblical Archaeological Institute Wuppertal (BAI)

Tall Zirā'a

The Gadara Region Project (2001-2011) Final Report

Volume 8.1 Wādī al-ʿArab Survey

Katja Soennecken – Patrick Leiverkus

With contributions by

Benjamin Schröder, Stefanie Hoss, Linda Olsvig-Whittaker,

Avi Shmida, Sabine Kraushaar and Marwan Al-Raggad

Editors of the Tall Zirā'a Final Reports Dieter Vieweger and Jutta Häser

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter https://portal.dnb.de abrufbar.

www.talziraa.de

1. Auflage

Copyright © 2021 by Deutsches Evangelisches Institut für Altertumswissenschaft des Heiligen Landes/ Biblisch-Archäologisches Institut Wuppertal, Jerusalem/Amman/Wuppertal

Dieses Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne schriftliche Zustimmung des Deutschen Evangelischen Instituts für Altertumswissenschaft des Heiligen Landes (DEI) und des Biblisch-Archäologischen Instituts Wuppertal (BAI) unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

No part of this publication may be reproduced in any form (print, photography, CD-ROM, DVD, BLUERAY, Internet or any other medium) without written permission of the German Protestant Institute of Archaeology (GPIA) and the Biblical Archaeological Institute Wuppertal (BAI).

All Tall Zirāʿa-Final Reports (Volumes 1–9) are available free of charge: http://www.tallziraa.de/Endpublikation/0_470.htm (PDF-Version for download) © Jerusalem/Amman/Wuppertal 2017–2021

Sollte diese Publikation Links auf Webseiten Dritter enthalten, so übernehmen wir für deren Inhalte keine Haftung, da wir uns diese nicht zu eigen machen, sondern lediglich auf deren Stand zum Zeitpunkt der Erstveröffentlichung verweisen.

Cover-Layout: Patrick Leiverkus Front and back cover: Tall Zirā'a and Wādī al-'Arab; aerial view, looking from east to west; by courtesy of APAAME, David Kennedy, 2011 Standard-Layout: Based on the template of the DAI-volumes >Menschen – Kulturen – Traditionen</Forschungscluster Editorial work: Jutta Häser/Ute Wielandt Typesetting: Ute Wielandt Druck und Einband: Books on Demand GmbH, Norderstedt Printed in Germany ISBN 978-3-579-08297-4

www.gtvh.de

To Prof. Siegfried Mittmann

TABLE OF CONTENTS

Volume 8.1

Lis	t of Fi	GURES		XI
Lis	t of Ta	BLES		XXXIII
Lis	t of P	LATES		XXXVI
Lis	t of C	GRAPHS		XXXVI
Ав	BREVIA	TIONS .		XXXVII
Pr	EFAC	E by Diei	er Vieweger/Jutta Häser	1
In	TROD	UCTIO	N AND ACKNOWLEDGEMENTS by Katja Soennecken/Patrick Leiverkus	
1.	Тне	Wādī	AL-'ARAB SURVEY by Katja Soennecken/Patrick Leiverkus	
	1.1.	Introd	uction	
	1.2.	Previo	ous Surveys in the Area	14
		1.2.1.	N. Glueck—1932–1947	14
		1.2.2.	S. Mittmann—1963–1966	
		1.2.3.	J. W. Hanbury-Tenison—1983	16
		1.2.4.	L. El-Khouri—2005	17
		1.2.5.	T. Kerestes, J. Lundquist, B. Wood, K. Yassine—1978	17
	1.3.	Metho	bodology and Aims of the New Wādī al-'Arab Survey	
	1.4.	Seaso	ns	
		1.4.1.	2009 Season	
		1.4.2.	2010 Season	
		1.4.3.	2011 Season	
		1.4.4.	2012 and 2014 Study Seasons	
	1.5.	Sites.		
		1.5.1.	General Remarks	
		1.5.2.	Zones	
			1.5.2.1. Tall Zirāʿa	
			1.5.2.2. Zone A	
			1.5.2.3. Zone B	

VIII

	1.5.3.	Outline	e of the Settlement Types Characteristic of the Different Periods				
		1.5.3.1.	Paleolithic/Chalcolithic Period	30			
			1.5.3.1.1. Lithic Scatter	30			
			1.5.3.1.2. Dolmens	30			
		1.5.3.2.	Bronze Age				
			1.5.3.2.1. Early Bronze Age				
			1.5.3.2.2. Middle Bronze Age	35			
			1.5.3.2.3. Late Bronze Age	35			
		1.5.3.3.	Iron Age				
			1.5.3.3.1. Iron Age I				
			1.5.3.3.2. Iron Age II				
		1.5.3.4.	Hellenistic – Roman Periods				
			1.5.3.4.1. Hellenistic Period				
			1.5.3.4.2. Early Roman Period				
		1.5.3.5.	Late Roman – Byzantine Periods				
			1.5.3.5.1. Late Roman Period				
			1.5.3.5.2. Byzantine Period				
		1.5.3.6.	Islamic Period	39			
			1.5.3.6.1. Umayyad Period				
			1.5.3.6.2. Ayyubid-Mamluk Period				
			1.5.3.6.3. Ottoman Period	41			
1.6.	Select	Selected Finds					
	1.6.1.	Cerami	ics	43			
		1.6.1.1.	"Galilean bowls"	43			
		1.6.1.2.	Stamp Impression				
		1.6.1.3.	Oil Lamps	45			
	1.6.2.	Stone F	inds	47			
		1.6.2.1.	Assessment of the Lithic Finds by Benjamin Schröder	47			
			1.6.2.1.1. Introduction	47			
			1.6.2.1.2. The Finds	49			
			1.6.2.1.3. Assessment	52			
		1.6.2.2.	Stone Vessels	56			
	1.6.3.	Glass F	inds by Stefanie Hoss	58			
	_ `		Introduction				

			1.6.3.2.	The Finds	58
			1.6.3.3.	Analysis	62
	1.7.	Destru	uctions		68
	1.8.	Biblio	graphy		70
2.	Rel	ATED]	Researc	CH PROJECTS IN THE WĀDĪ AL-'ARAB	83
	2.1.	Lands	cape Are	chaeology by Linda Olsvig-Whittaker/Patrick Leiverkus	83
		2.1.1.	Landsca	pe Archaeology in the Wādī al-'Arab Region	83
		2.1.2.		Settlements and Single Complexes in Relation to Habitat in the -'Arab region	84
			2.1.2.1.	Introduction	84
			2.1.2.2.	Methods	85
			2.1.2.3.	Results	88
			2.1.2.4.	Summary and Discussion	94
	2.2.			n of Northern Jordan: Two Transects from the Jordan Valley to the ands by Avi Shmida/Linda Olsvig-Whittaker/Katja Soennecken	
		2.2.1.	Introduc	ction	96
			2.2.1.1.	First Geomorphological Pattern	97
			2.2.1.2.	Second Pattern: From the Ridge, Moving East with Decreasing Rainfall	97
			2.2.1.3.	Third Pattern: Rift Valley	98
		2.2.2.	First Tra	nsect: From Šūna to Irbid	99
			2.2.2.1.	Lower Belt: Pseudo-savannah of Ziziphus Spina-Christi	99
			2.2.2.2.	Middle Belt: Open Shrubland	99
			2.2.2.3.	Upper Belt: Quercus Ithaburensis Woodland	100
			2.2.2.4.	Wādīs within the <i>Q. Ithaburensis</i> Woodland	100
			2.2.2.5.	Anthropogenic Communities	101
		2.2.3.	Second	Transect: From the Area of Kufrinğa to 'Ağlūn	101
			2.2.3.1.	Belt a	101
			2.2.3.2.	Belt b. Ziziphus Lotus and Retama Raetam Open Shrubland	101
			2.2.3.3.	Belt c: Species Rich Transitional Belt with Scattered Q. Ithaburensis	102
			2.2.3.4.	Belt d: <i>Q. Calliprinos</i> Chaparral	102
			2.2.3.5.	Belt d2 (Edaphic): Pinus Halepensis Forest	102
			2.2.3.6.	Belt e: Q. Calliprinos Mixed Evergreen and Deciduous Chaparral	102
			2.2.3.7.	Belt f: Transitional Dwarf Shrub Community	103
		2.2.4.	Discussi	on	103

2	2.3. A Geo	oscientif	ic View of the Natural Prerequisites of Wādī al-'Arab	108	
	2.3.1.	OSL Da	OSL Dating of Cisterns in Wadī al-'Arab by Sabine Kraushaar et al 108		
		2.3.1.1.	Abstract	108	
		2.3.1.2.	Introduction	108	
		2.3.1.3.	Historical Background	109	
		2.3.1.4.	Study Area	109	
		2.3.1.5.	Methods	111	
		2.3.1.6.	Results	112	
		2.3.1.7.	Discussion	114	
		2.3.1.8.	Conclusion	116	
		2.3.1.9.	Acknowledgements	116	
	2.3.2.	Natural	Resources in Wādī al-'Arab by Sabine Kraushaar/Marwan Al-Raggad	117	
		2.3.2.1.	Introduction	118	
		2.3.2.2.	The Geological Genesis of the Wādī al-'Arab	118	
		2.3.2.3.	The Geology of the Wadī al-'Arab and their Resources	119	
		2.3.2.4.	Clays as Important Resource for Ceramic Production	124	
		2.3.2.5.	Soils in Wādī al-'Arab and their agricultural potential	125	
2	2.4. Biblic	graphy.		129	

Volume 8.2

Х

3.	CATALOGUE OF SITES 1			
	3.1.	Inform	nation on the Catalogue of Sites by Katja Soennecken/Patrick Leiverkus	1
	3.2.	Catalo	ogue of Sites by Katja Soennecken	2
	3.3.	Regis	ter	
		3.3.1.	Abbreviations	
		3.3.2.	Site Names and Numbers	
	3.4.	Biblic	ography	

LIST OF FIGURES

Volume 8.1

Figures of Preface and Introduction

Fig. 0.1	Tall Zirā'a. View from east to west.Photograph taken in 20111
Fig. 0.2	Map showing the area around Tall Zirāʿa2

Fig. 0.3	Tall Zirā'a and its geographic location .3
Fig. 0.4	The Wādī al-'Arab11
Fig. 0.5	Survey team walking along the Wādī al-'Arab12

Figures of Chapter 1: The Wādī al-'Arab Survey

Fig. 1.1	The survey area13
Fig. 1.2	Sites documented by N. Glueck14
Fig. 1.3	Sites documented by S. Mittmann 15
Fig. 1.4	Sites documented by J. W. Hanbury- Tenison16
Fig. 1.5	Sites documented by L. El-Khouri 17
Fig. 1.6	Zones A and B with documented sites
Fig. 1.7	Excerpt from the database
Fig. 1.8	Participants mapping an Ottoman mill20
Fig. 1.9	The three large talls within the survey area21
Fig. 1.10	Sites 211/225-7 and 211/225-8 in re- lation to Tall Zirā'a and Gadara21
Fig. 1.11	Sites 211/225-7 (Roman-Byzantine) and 211/225-8 (Bronze Age)22
Fig. 1.12	S. Kraushaar during the campaign in 201023
Fig. 1.13	K. Soennecken24
Fig. 1.14	P. Leiverkus24
Fig. 1.15	Sites newly recorded during the Wādī al-'Arab survey26
Fig. 1.16	Sites in a 500 m radius around Tall
C	Zirāʿa27

Fig. 1.18	Dolmens in the survey area31
Fig. 1.19	222/215-2
Fig. 1.20	222/215-2 overview (looking south) 31
Fig. 1.21	222/216-1
Fig. 1.22	224/217-1 overview32
Fig. 1.23	224/217-2 overview
Fig. 1.24	224/217-3
Fig. 1.25	224/217-3 overview
Fig. 1.26	225/215-1
Fig. 1.27	225/215-1 overview
Fig. 1.28	226/213-2
Fig. 1.29	226/213-2 overview (looking north)33
Fig. 1.30	Sites with Early Bronze Age remains.34
Fig. 1.31	Sites with Middle and Late Bronze Age remains35
Fig. 1.32	Sites with Iron Age remains36
Fig. 1.33	Sites with Hellenistic to Early Ro- man remains37
Fig. 1.34	Sites with Late Roman–Byzantine remains
Fig. 1.35	Sites with Islamic remains
Fig. 1.36	Sites with Umayyad remains40
Fig. 1.37	Sites with Ayyubid-Mamluk remains 41
Fig. 1.38	Sites with Ottoman remains42

Fig. 1.39	Schematic drawing of a horizontal- wheeled mill with an <i>arubah</i> pen- stock (Zena Kamash)42
Fig. 1.40	WaA 900084-3144
Fig. 1.41	WaA 900084-3144
Fig. 1.42	Sites with oil lamps46
Fig. 1.43	WaA 900154-3246
Fig. 1.44	Exposed flint deposits in the slope profile along the upper course of the access road in the direction of Umm Oes
	068

Fig. 1.45	Fragment of a flint nodule and bands of dark brown and black flint in bet- ween layers of limestone and marl lime in the slope profile at the road- side
Fig. 1.46	Lower city of Tall Zirā'a (211/225- 16) in 201168
Fig. 1.47	Lower city of Tall Zirā'a (211/225- 16) in 201768
Fig. 1.48	Site 233/229-1 Mosque with integrat- ed Roman sarcophagus and archi- trave

Figures of Chapter 2: Related Research Projects in the Wādī al-'Arab

- Fig. 2.1 Map of the study area with sites. Area A was completely mapped both for sites and for habitat. Area B was checked using historical records of sites, and mapped for habitat at ½ km radius from each site85
- Fig. 2.2 Habitat mapping of the study area done by hand on QGIS......87
- Fig. 2.4 Cisterns in relation to the categorized sites......92
- Fig. 2.5 Transect 1, from Shuna to the Irbid plateau. Geomorphological pattern 1: Zarqā' to 'Ağlūn mountains to Irbid plateau with basalt at the east end 97
- Fig. 2.6 West escarpments of the 'Ağlūn mountains, toward the Jordan valley..98
- Fig. 2.7 Vegetation map of Transjordan......104
- Fig. 2.8 Bioclimatical map of Transjordan 105
- Fig. 2.10 Distribution of Pistacia atlantica in the west Jordan region107 Wādī al-'Arab catchment with the Fig. 2.11 re-visited survey points of S. Mittmann 110 Fig. 2.12 C1 and c2 DEM, documented shape and profile position 111 Fig. 2.13 Profile pictures, sample locations and sediment ages.....113 Fig. 2.14 Examples for the anthropogenic use of natural resources in the Wadī al-'Arab. a: Basalt bowl, TZ 001209-001; b: Flint tool, TZ 001332-001; c: Crude iron nucleoids, TZ 006996-001; d: Bitumen from Dead Sea, TZ 007245-001 117 Fig. 2.15 Geological map of the Wadī al-'Arab 120 Fig. 2.16 Iron Age workshop, Tall Zirā'a, Square AP 120, Context 4852, view from south......120 Fig. 2.17 Vertisol above Umm Rigām Chert Limestone with 0.2 % carbonate and 46 % clay content125

Volume 8.2

Figures of Chapter 3: Catalogue of Sites

Fig. 3.1	Handle of an Early Bronze Age jar WaA 900035-015
Fig. 3.2	Rim of a Late Bronze Age bowl WaA 900035-035
Fig. 3.3	Rim of an Iron Age jar WaA 900035- 085
Fig. 3.4	Rim of an Iron Age II jar WaA 900035-135
Fig. 3.5	Rim of a bowl or krater from Byzan- tine-Islamic period WaA 900035-126
Fig. 3.6	Rim of a bowl or krater from Byzan- tine-Islamic period WaA 900035-156
Fig. 3.7	Body sherd of a bowl from Islamic period WaA 900035-186
Fig. 3.8	Body sherd of a jug from Mamluk period WaA 900035-226
Fig. 3.9	View of site 207/224-17
Fig. 3.10	Substructure inside of site 207/224-17
Fig. 3.11	208/224-1-0019
Fig. 3.12	208/224-1-0029
Fig. 3.13	208/224-1-00310
Fig. 3.14	208/224-1-00410
Fig. 3.15	208/224-1-00511
Fig. 3.16	208/224-1-00611
Fig. 3.17	208/224-1-00712
Fig. 3.18	ETS rim of a bowl WaA 900034-2817
Fig. 3.19	Rim of a "Galilean bowl" WaA 900034-2017
Fig. 3.20	Handle with rim of a cooking pot WaA 900034-1418
Fig. 3.21	Rim of a pithos WaA 900034-33 18
Fig. 3.22	Rim of an Islamic jar or jug WaA 900034-5018
Fig. 3.23	Body sherd with handle base of a Mamluk jug or jar WaA 900034-1718

Fig. 3.24	Goblet rim WaA 990002-0618
Fig. 3.25	Goblet base WaA 990002-0718
Fig. 3.26	View of Tall al-Munțār (site 208/224-1, facing south-west)19
Fig. 3.27	Southern spur of Tall al-Munțār with a view of the Jordan Valley 19
Fig. 3.28	208/224-2 Overview of the cave (fa- cing north-east)20
Fig. 3.29	208/224-2 Mouth of the cistern (fa- cing north-east)21
Fig. 3.30	208/224-3 Agricultural installations .22
Fig. 3.31	Body sherd of a Roman-Byzantine krater or bowl WaA 900009-0424
Fig. 3.32	Faience fragment WaA 990001-0124
Fig. 3.33	View of 210/224-124
Fig. 3.34	211/224-1-00127
Fig. 3.35	211/224-1-00228
Fig. 3.36	211/224-1-00328
Fig. 3.37	211/224-1-00429
Fig. 3.38	Rim of a "Galilean bowl" WaA 900007-0131
Fig. 3.39	Cooking pot handle with rim WaA 900007-0331
Fig. 3.40	View of site 211/224-1 (facing west)31
Fig. 3.41	View of site 211/224-1 (facing north) 32
Fig. 3.42	View of the slope in front of site 211/224-1 (facing west)
Fig. 3.43	211/224-2-002
Fig. 3.44	211/224-2-003
Fig. 3.45	211/224-2-004
Fig. 3.46	211/224-2-005
Fig. 3.47	211/224-2-006
Fig. 3.48	211/224-2-008

XIV

Fig. 3.49	Rim of a Roman – Byzantine bowl (PRSW) WaA 900013-4542
Fig. 3.50	Base of a Hellenistic – Roman bowl or plate WaA 900013-3242
Fig. 3.51	Base of a Roman – Byzantine bowl or plate WaA 900013-3342
Fig. 3.52	Handle with body sherd of a Hel- lenistic – Roman jar or jug WaA 900013-5242
Fig. 3.53	Rim of an Islamic bowl WaA 900013-1643
Fig. 3.54	Base of a Mamluk bowl WaA 900013-3643
Fig. 3.55	Front and back side of tabun frag- ment WaA 900013-1343
Fig. 3.56	Rim of a "Galilean bowl" WaA 900055-0344
Fig. 3.57	Rim of a bowl (PRSW) WaA 900055-2144
Fig. 3.58	Fragment of an oil lamp WaA 900055-2344
Fig. 3.59	Overall view of site 211/224-2 (fa- cing south-east)45
Fig. 3.60	Demolitions in the north-east of the site 211/224-2
Fig. 3.61	Site 221/224-2 al-Waḥšā, soil profile (NE) towards the south-east. Two layers of ash are discernible46
Fig. 3.62	Site 221/224-3, view of entrance47
Fig. 3.63	Site 221/224-3, left: grave entrance; right: grave interior47
Fig. 3.64	Body sherd WaA 900070-0148
Fig. 3.65	Site 221/224-4, grave entrance
Fig. 3.66	View of site 211/224-4 (facing east) 49
Fig. 3.67	211/224-5-00150
Fig. 3.68	211/224-5-00251
Fig. 3.69	211/224-5-00351
Fig. 3.70	211/224-5-004
Fig. 3.71	211/224-5-005
Fig. 3.72	211/225-1-001

Fig. 3.73	211/225-1-002
Fig. 3.74	211/225-1-00356
Fig. 3.75	211/225-1-004
Fig. 3.76	211/225-1-00557
Fig. 3.77	Base of a bowl WaA 900006-0458
Fig. 3.78	Rim of a bowl WaA 900006-0758
Fig. 3.79	View of site 211/225-1 (facing north) .59
Fig. 3.80	211/225-2-00160
Fig. 3.81	211/225-2-00260
Fig. 3.82	211/225-2-00361
Fig. 3.83	211/225-2-00461
Fig. 3.84	Body sherd with handle base of an Early Bronze Age jug WaA 900011- 24
Fig. 3.85	Base ring of a jar MBA/LBA/IA WaA 900011-22
Fig. 3.86	Rim of an Iron Age krater WaA 900011-4566
Fig. 3.87	Rim of a Roman Byzantine cooking pot WaA 900011-2066
Fig. 3.88	Base of a Roman – Byzantine bowl WaA 900011-2767
Fig. 3.89	Handle of a Roman – Byzantine am- phora WaA 900011-3167
Fig. 3.90	View of site 211/225-3 (facing south- east)67
Fig. 3.91	View of the slope at site 211/225-4 (facing north)
Fig. 3.92	Oil press at site 211/225-5 (facing north)
Fig. 3.93	Site 211/225-6, chute inside the cave70
Fig. 3.94	Site 211/225-6, vestiges of a quarry near the cave
Fig. 3.95	Site 211/225-6, overall view (facing south-west)71
Fig. 3.96	211/225-7-00172
Fig. 3.97	View of site 211/225-7 (facing south- west)
Fig. 3.98	211/225-8-001

Fig. 3.99	211/225-8-00275
Fig. 3.100	211/225-8-00376
Fig. 3.101	211/225-8-004
Fig. 3.102	Rim of an Early Bronze Age bowl WaA 900153-3879
Fig. 3.103	Rim of an Early Bronze Age bowl or krater WaA 900153-3979
Fig. 3.104	Body sherd of a cooking pot WaA 900153-1979
Fig. 3.105	Body sherd of Middle Bronze Age jug WaA 900010-0679
Fig. 3.106	View of site 211/225-8 (facing north) 80
Fig. 3.107	Site 211/225-9, protective wall (fa- cing north-east)
Fig. 3.108	211/225-10-00182
Fig. 3.109	211/225-10-002
Fig. 3.110	211/225-10-00383
Fig. 3.111	211/225-10-004
Fig. 3.112	211/225-10-005
Fig. 3.113	211/225-10-006
Fig. 3.114	211/225-10-00785
Fig. 3.115	211/225-10-00885
Fig. 3.116	View of site 211/225-10 (facing north-north-west)
Fig. 3.117	View from site 211/225-10 to the Tall Zirā'a
Fig. 3.118	General view of site 211/225-11
Fig. 3.119	Site 211/225-12, view of quarry (fa- cing north-east)90
Fig. 3.120	211/225-13-001
Fig. 3.121	211/225-13-00292
Fig. 3.122	211/225-13-002
Fig. 3.123	211/225-13-002
Fig. 3.124	211/225-13-002
Fig. 3.125	211/225-13-002
Fig. 3.126	211/225-13-003
Fig. 3.127	211/225-13-00495
Fig. 3.128	211/225-13-005

Fig. 3.129	211/225-13-006
Fig. 3.130	211/225-13-00797
Fig. 3.131	211/225-13-00897
Fig. 3.132	Handle of a Mamluk bowl WaA 900065-0198
Fig. 3.133	Body sherd of a Roman bowl WaA 900065-0598
Fig. 3.134	211/225-13, view of Contexts 001 and 002 (facing south-east)99
Fig. 3.135	211/225-13, embossed ashlar in Context 00299
Fig. 3.136	Rim of an Early Bronze Age cook- ing pot WaA 900115-23106
Fig. 3.137	Rim of a Late Bronze Age bowl, possibly also re-used as oil lamp WaA 900115-66106
Fig. 3.138	Rim of a Roman-Byzantine cooking bowl WaA 900115-05106
Fig. 3.139	Rim of a Late Roman – Byzantine bowl WaA 900115-10106
Fig. 3.140	Rim of a Byzantine-Umayyad jar or amphora WaA 900115-15107
Fig. 3.141	Body sherd of a basin from the Byzantine-Islamic period WaA 900115-68107
Fig. 3.142	Coin WaA 990060-01 obverse and reverse
Fig. 3.143	Flint flakes WaA 900064-01 108
Fig. 3.144	Tesserae WaA 900071-01 108
Fig. 3.145	Site 211/225-14, view of lower city of the Tall Zirā'a (facing north- west)
Fig. 3.146	Site 211/225-14, view over lower city of the Tall Zirā'a (facing west) 109
Fig. 3.147	Rim of a Basins from the Byzantine – Umayyad period WaA 900116-02.111
Fig. 3.148	Rim of an Iron Age II cooking pot WaA 900116-03111
Fig. 3.149	View of site 211/225-15 as seen from Tall Zirāʿa (facing north-west) 2011 . 111
Fig. 3.150	View of site 211/225-15 as seen from Tall Zirāʿa (facing north-west) 2017 . 112

XV

Fig. 3.151	211/225-16-001113	Fig. 3.1
Fig. 3.152	211/225-16-002 114	
Fig. 3.153	211/225-16-003114	Fig. 3.1
Fig. 3.154	211/225-16-004	Fig. 3.1
Fig. 3.155	211/225-16-005	U
Fig. 3.156	211/225-16-006	Fig. 3.1
Fig. 3.157	211/225-16-007	E:- 21
Fig. 3.158	Rim of an Early Bronze Age jug WaA 900117-05128	Fig. 3.1
	Body sherd of an Early Bronze Age jug WaA 900154-104128	Fig. 3.1
Fig. 3.160	Rim of a cooking pot from Middle/ Late Bronze Age WaA 900154-110129	Fig. 3.1
Fig. 3.161	Rim of an Iron Age cooking pot WaA 900117-23129	Fig. 3.1
Fig. 3.162	Rim of a jug from Iron Age II WaA 900117-26129	Fig. 3.1
Fig. 3.163	Handle of a jug or amphora with remnants of a stamp impression	Fig. 3.1
	WaA 900154-106129	Fig. 3.1
Fig. 3.164	Base ring of a Hellenistic bowl WaA 900117-02130	Fig. 3.1
Fig. 3.165	Handle of a jug or amphora with remnants of a stamp impression WaA 900154-106130	Fig. 3.1 Fig. 3.1
Fig. 3.166	Rim of a Hellenistic-Roman bowl or plate WaA 900117-14130	Fig. 3.1
Fig. 3.167	Body sherd of a Roman bowl (ESA?) WaA 900154-80131	118. 51
Fig. 3.168	Nozzle of "Herodian oil lamp" WaA 900154-32131	Fig. 3.1
Fig. 3.169	Mirror of Byzantine oil lamp WaA 900154-46131	Fig. 3.1
Fig. 3.170	Rim of Byzantine cooking bowl	Fig. 3.1
E:- 2 171	WaA 900154-19 131	Fig. 3.1
rig. 3.1/1	Rim of a Byzantine-Islamic bowl WaA 900154-59 132	Fig. 3.1
Fig. 3.172	Rim of a cooking bowl from the Is-	Fig. 3.1
	lamic period WaA 900117-04 132	Fig. 3.1
Fig. 3.173	Blade fragment WaA 990066-01 132	Fig. 3.1
Fig. 3.174	Blade fragment WaA 990083-01 132	Fig. 3.1

13 14	Fig. 3.175	Rim of a bottle (Roman – Umayyad) WaA 990084-05133
14	Fig. 3.176	Rim of an Umayyad bottle WaA 990084-04133
15 15	Fig. 3.177	View of site 211/225-16 (facing north-west)
16 16	Fig. 3.178	View of site 211/225-16 from Tall Zirā'a in 2011 (facing north-west)134
28	Fig. 3.179	View of site 211/225-16 from Tall Zirā'a in 2017
28	Fig. 3.180	Rim of an Early Bronze Age bowl or plate WaA 900118-02136
20	Fig. 3.181	Rim of an Iron Age krater WaA 900118-03136
29	Fig. 3.182	Rim of a bowl from the Late Roman- Byzantine period WaA 900118-01136
29	Fig. 3.183	Body sherd with roller-stamping de- coration from the Byzantine-Islamic period WaA 900118-09136
	Fig. 3.184	View of site 211/225-17 (facing west)137
29	Fig. 3.185	View of site 211/225-18 from Tall Zirāʿa (facing south-west)138
30	Fig. 3.186	Site 211/225-19, column drum 139
	Fig. 3.187	Hirbat al-'Ağamī, site 221/226-1, view of the plateau (facing west) 141
30	Fig. 3.188	Hirbat al-'Ağamī, site 221/226-1, hewn boulders on the plateau 141
30	Fig. 3.189	Hirbat al-'Ağamī, site 221/226-1, round (modern) structure, spolia
31		built into it, possibly remains of a tower
31	Fig. 3.190	Site 2132/221-1, cistern on the northern slope
31	Fig. 3.191	212/221-2-001
	Fig. 3.192	212/221-2-002
31	Fig. 3.193	212/221-2-003
32	Fig. 3.194	212/221-2-004
)2	Fig. 3.195	212/221-2-005
32	Fig. 3.196	212/221-2-006
32	Fig. 3.197	212/221-2-007
32	Fig. 3.198	212/221-2-008

Fig. 3.199 212/221-2-009 148	
Fig. 3.200 212/221-2-010	
Fig. 3.201 Rim of a Byzantine-Umayyad jug or amphora WaA 900123-02150	
Fig. 3.202 Bottom of an Islamic bowl WaA 900123-04150	
Fig. 3.203 View of site 212/221-2 (facing north) 151	
Fig. 3.204 Site 212/221-3, overview152	
Fig. 3.205 Site 212/221-3, entrance 152	
Fig. 3.206 Site 212/221-3, two niches in the in- terior	
Fig. 3.207 Site 212/221-3, quarry in the vicinity 153	
Fig. 3.208 Site 212/222-1, watermill (facing south)154	
Fig. 3.209 Site 212/222-1, watermill (facing north-east)155	
Fig. 3.210 Site 212/222-2, overall view (facing north-east)156	
Fig. 3.211 Site 212/222-2, entrance of the shafts (facing north)156	
Fig. 3.212 Site 212/222-2, interior of the shaft 157	
Fig. 3.213 Site 212/222-2, cistern in the vici- nity	
Fig. 3.214 Body sherd of a "bag-jar" WaA 900142-01158	
Fig. 3.215 View of site 212/222-3 (facing south)159	
Fig. 3.216 212/223-1-001	
Fig. 3.217 212/223-1-002	
Fig. 3.218 212/223-1-003	
Fig. 3.219 212/223-1-004 162	
Fig. 3.220 212/223-1-005	
Fig. 3.221 212/223-1-006	
Fig. 3.222 212/223-1-007	
Fig. 3.223 212/223-1-008	
Fig. 3.224 Sketch plan of site 212/223-1 165	
Fig. 3.225 Rim of an Early Bronze Age jar WaA 900000-44171	
Fig. 3.226 Rim of an Iron Age jar WaA 900000-01 (Holemouth)	

	Base of Roman-Byzantine bowl or jar WaA 900000-20 171
Fig. 3.228	Painted Roman-Byzantine body sherd WaA 900000-66171
Fig. 3.229	Hellenistic-Roman body sherd (ETS) WaA 900002-05172
Fig. 3.230	Body sherd of a jar from Islamic times WaA 900002-01a 172
Fig. 3.231	Body sherd from the Middle Bronze Age with herringbone pattern WaA 900001-106178
Fig. 3.232	Rim of a cooking pot from the Iron Age I WaA 900001-29 179
Fig. 3.233	Rim of a cooking pot from the Iron Age II WaA 900001-105179
Fig. 3.234	Base – base ring from a Hellenistic- Roman bowl WaA 900001-90 179
Fig. 3.235	Base of a Roman-Byzantine bowl or jar WaA 900001-81179
Fig. 3.236	Rim of a cooking pot from the Middle Bronze Age WaA 900003-61190
Fig. 3.237	Chocolate-on-white ware body sherd (MBA/LBA) WaA 900004-64190
Fig. 3.238	Base from a jar or jug from the Iron Age WaA 900003-04b191
Fig. 3.239	Rim of an Iron Age bowl WaA 900003-45191
Fig. 3.240	Rim of a Hellenistic-Roman bowl WaA 900004-55191
Fig. 3.241	Rim of a large storage jar (EBAA II/ III) WaA 900152-01194
Fig. 3.242	Rim of a Middle Bronze Age bowl WaA 900151-11194
Fig. 3.243	Rim of a jar or jug (LBA II) WaA 900151-04194
Fig. 3.244	Rim of a jar (IA IIC) WaA 900151-12194
Fig. 3.245	Base ring of an Umayyad jar or jug WaA 900152-26195
Fig. 3.246	Mamluk body sherd with handle base WaA 900152-29

Fig. 3.247	Flint/silex blade WaA 990082-01 195
Fig. 3.248	View of the Tall Qāq (Hirbat Bond) from the south-west
Fig. 3.249	Spring at Tall Qāq (Hirbat Bond) 196
Fig. 3.250	Burial cave below the lower city of Tall Qāq (Hirbat Bond)197
Fig. 3.251	View of site 212/223-2 (facing south- west) 198
Fig. 3.252	View of site 212/223-2 (facing south)198
Fig. 3.253	Rim of a "bag-jar" WaA 900143-01 .199
Fig. 3.254	View of site 212/223-3 (facing north- east)200
Fig. 3.255	View of site 212/223-3 (facing north- west)200
Fig. 3.256	Tesserae WaA 990076 201
Fig. 3.257	View of site 212/223-4 (facing north-east)202
Fig. 3.258	Arcosole at site 212/223-4 (facing north-east)202
Fig. 3.259	Shafts on the eastern slope of Wādī az-Zaḥar203
Fig. 3.260	Shafts on the western slope of of Wādī az-Zahar204
Fig. 3.261	Detail of shafts in the eastern slope of Wādī az-Zaḥar204
Fig. 3.262	Details of shafts in the western slo- pe of Wādī az-Zaḥar205
Fig. 3.263	Wall close to a cistern at site 212/223-6206
Fig. 3.264	View of site 212/223-6 (facing east).207
Fig. 3.265	View of the caves at site 212/226-1 (facing north-east)213
Fig. 3.266	View of the three caves at site 213/222-1 (facing south)215
Fig. 3.267	Site 213/222-1, entrance of cave 1 215
Fig. 3.268	Site 213/222-1, interior of cave 1 216
Fig. 3.269	Site 213/222-1, entrance of cave 2 216
Fig. 3.270	Site 213/222-1, interior of cave 2 217
Fig. 3.271	Site 213/222-1, entrance of cave 3 217
Fig. 3.272	Site 213/222-1, interior of cave 3 218

Fig. 3.273 View of site 213/226-1 (facing south)220
Fig. 3.274 View of site 213/226-1 (facing south- west)
Fig. 3.275 213/226-2-001
Fig. 3.276 Mill on the north side of the Wādī al-'Arab223
Fig. 3.277 Natural stone dam in the Wādī al- 'Arab225
Fig. 3.278 View of site 213/227-2 (facing east)227
Fig. 3.279 View of site 213/227-2, in the back- ground 213/228-1 (facing east)227
Fig. 3.280 213/228-1-001228
Fig. 3.281 213/228-1-002
Fig. 3.282 213/228-1-003
Fig. 3.283 Holemouth vessel WaA 900015-03231
Fig. 3.284 Early Bronze Age ledge handle WaA 900051-01231
Fig. 3.285 Rim of a Middle Bronze Age bowl WaA 900015-06231
Fig. 3.286 Rim of a Late Roman-Byzantine bowl WaA 900015-02231
Fig. 3.287 View over site 213/228-1 (facing south-west)232
Fig. 3.288 Aerial image of site 213/228-1 with context 001 (outlined)232
Fig. 3.289 Aerial image of context 001, Roman watch post233
Fig. 3.290 Rim of an Early Bronze Age bowl WaA 900016-02235
Fig. 3.291 Rim of a bowl (Khirbet Kerak Ware) WaA 900114-01235
Fig. 3.292 Flints WaA 990056-01235
Fig. 3.293 View of site 213/228-2 (facing north- east)236
Fig. 3.294 Site 213/228-2, rock with circular erosion236
Fig. 3.295 Site 213/228-2, hewn rock (facing south-west)237
Fig. 3.296 Quarry on site 213/228-3238

11g. 5.297	View of site 213/228-3
Fig. 3.298	View of site 214/222-1 (facing west).239
Fig. 3.299	Site 214/222-2, backfilled entrance to the cistern
Fig. 3.300	View of site 214/222-3242
Fig. 3.301	Rim of a bowl (ARSW?) WaA 900036-02244
Fig. 3.302	Handle of a jar/jug WaA 900036-04 244
Fig. 3.303	View of site 214/225-1 (facing north- west), in the foreground: cistern245
Fig. 3.304	Site 214/225-1, modern wall with spolia245
Fig. 3.305	Sketch of site 214/225-2246
Fig. 3.404	Site 214/225-2, entrance to the tomb (facing south)
Fig. 3.307	Hirbat al-Bwēre, entrance to the cis- tern (facing west)248
Fig. 3.308	View of site 214/225-4 (facing north)250
Fig. 3.309	View of site 214/225-4 (facing east) . 251
Fig. 3.310	Base ring of a Roman-Byzantine jar WaA 900125-06253
Fig. 3.311	Rim of a Mamluk bowl WaA 900125-01
Fig. 3.312	View of site 214/225-5 (facing east)253
Fig. 3.313	
0	Site 214/225-5, shaft grave254
-	Site 214/225-5, shaft grave254 Site 214/225-5, spolia in modern en- closure wall254
Fig. 3.314	Site 214/225-5, spolia in modern en-
Fig. 3.314 Fig. 3.315	Site 214/225-5, spolia in modern en- closure wall254 View of site 214/226-2 (on the bot-
Fig. 3.314 Fig. 3.315 Fig. 3.316	Site 214/225-5, spolia in modern en- closure wall
Fig. 3.314 Fig. 3.315 Fig. 3.316 Fig. 3.317	Site 214/225-5, spolia in modern en- closure wall
Fig. 3.314 Fig. 3.315 Fig. 3.316 Fig. 3.317 Fig. 3.318	Site 214/225-5, spolia in modern en- closure wall
Fig. 3.314 Fig. 3.315 Fig. 3.316 Fig. 3.317 Fig. 3.318 Fig. 3.319	Site 214/225-5, spolia in modern en- closure wall
Fig. 3.314 Fig. 3.315 Fig. 3.316 Fig. 3.317 Fig. 3.318 Fig. 3.319 Fig. 3.320	Site 214/225-5, spolia in modern en- closure wall

Fig. 3.323	214/227-1-005
Fig. 3.324	214/227-1-005
Fig. 3.325	214/227-1-006
Fig. 3.326	Sketch of site 214/227-1 with finds 262
Fig. 3.327	Rim of a Roman-Byzantine bowl WaA 900017-11272
	Handle with body sherd of a jar or jug WaA 900017-20272
Fig. 3.329	Tabun fragment WaA 900018-70272
Fig. 3.330	Rim of a bowl (ARSW?) WaA 900018-97272
Fig. 3.331	Rim of a jar (Roman – Umayyad) WaA 900018-83273
Fig. 3.332	Rim of a bowl (Byzantine – Islamic) WaA 900018-94273
Fig. 3.333	Base of a glass goblet
Fig. 3.334	Rim of a glass vessel WaA 990005-07273
Fig. 3.335	View of site 214/227-1 (facing south- west)274
Fig. 3.336	Ain Hanzūr (facing north)275
Fig. 3.337	214/227-3-001276
Fig. 3.338	214/227-3-002, overview of western slope
Fig. 3.339	214/227-3-002, view of southern slope
Fig. 3.340	214/227-3-003
Fig. 3.341	214/227-3-004
Fig. 3.342	214/227-3-005
Fig. 3.343	214/227-3-006
Fig. 3.344	214/227-3-007
Fig. 3.345	214/227-3-008
Fig. 3.346	214/227-3-009
Fig. 3.347	214/227-3-010
Fig. 3.348	214/227-3-011
Fig. 3.349	214/227-3-012
Fig. 3.350	214/227-3-013

Fig. 3.351	Rim of a Late Roman – Byzantine bowl WaA 900020-02293
Fig. 3.352	Rim of a bowl (ARSW) WaA 900021-05293
Fig. 3.354	Rim of a pithos (Rom-Byz-Um) WaA 900021-33293
Fig. 3.355	Rim of a Byzantine bowl (LRC) WaA 900150-22293
Fig. 3.356	Rim of a Byzantine bowl (ARS) WaA 900150-25294
Fig. 3.357	Rim of a cooking bowl (Byz Um) WaA 900150-32294
Fig. 3.358	Rim of a basin (Byz Um) WaA 900150-01294
Fig. 3.359	Rim of a bowl (Byz Um) WaA 900150-03294
Fig. 3.360	Handle with rim (Byz Um) WaA 900150-06295
Fig. 3.361	Body sherd of an amphora (Byz Um) WaA 900150-16295
Fig. 3.362	Brick (Byz Um) WaA 900150-36295
Fig. 3.363	Spout of an Umayyad jug WaA 900150-09295
Fig. 3.364	Rim of an Islamic bowl WaA 900021-02296
Fig. 3.365	Body sherd of an Islamic vessel WaA 900021-14296
Fig. 3.366	Glass bottom
Fig. 3.367	Pedestal of a chalice WaA 990006-07296
Fig. 3.368	Mortarium WaA 990078-001297
Fig. 3.369	View of site 214/227-3 after destruc- tion in 2013297
Fig. 3.370	Site 214/227-4, kerbstone made from limestone
Fig. 3.371	Site 214/227-5, kerbstone made from limestone299
Fig. 3.372	Site 214/227-6, two fragments of a kerbstone made from limestone300
Fig. 3.373	Site 214/227-7, shaft graves

Fig. 3.374	Site 214/227-7, shaft graves302
Fig. 3.375	View of site 214/227-7 (facing west).302
Fig. 3.376	View of site 214/227-7
Fig. 3.377	Rim of a Byzantine-Umayyad bowl WaA 900148-01306
Fig. 3.378	Rim of a bowl from Islamic times WaA 900148-14306
Fig. 3.379	Handle of a pan from Islamic times WaA 900148-25306
Fig. 3.380	Cistern at site 215/222-1
Fig. 3.381	Site 215/222-1, lid of a grave307
Fig. 3.382	Site 215/222-1, shaft grave308
Fig. 3.383	Site 215/222-1, quarry
Fig. 3.384	Overview of site 215/222-1 (facing north)
Fig. 3.385	Overview of site 215/222-1 (facing south-east)
Fig. 3.386	Rim of a basalt bowl WaA 990042-01
Fig. 3.387	Cistern, still in use, in Ṣēdūr 311
-	Cistern, still in use, in Şēdūr 311 215/225-1-001
Fig. 3.388	
Fig. 3.388 Fig. 3.389	215/225-1-001
Fig. 3.388 Fig. 3.389 Fig. 3.390	215/225-1-001
Fig. 3.388 Fig. 3.389 Fig. 3.390 Fig. 3.391	215/225-1-001
Fig. 3.388 Fig. 3.389 Fig. 3.390 Fig. 3.391 Fig. 3.392	215/225-1-001
Fig. 3.388 Fig. 3.389 Fig. 3.390 Fig. 3.391 Fig. 3.392 Fig. 3.393	215/225-1-001312Rim of a Roman-Byzantine pithosWaA 900037-32314Base ring of a jug or jar (Roman –Byzantine) WaA 900037-33314Site 215/225-1, view of the slope (facing north)315Site 215/225-1, view of the plateau315Site 215/225-2, view of the quarry
Fig. 3.388 Fig. 3.389 Fig. 3.390 Fig. 3.391 Fig. 3.392 Fig. 3.393 Fig. 3.394	215/225-1-001
Fig. 3.388 Fig. 3.389 Fig. 3.390 Fig. 3.391 Fig. 3.392 Fig. 3.393 Fig. 3.394 Fig. 3.395	215/225-1-001

Fig.	3.398	Site 215/226-4, Ottoman retaining wall (facing north)
Fig.	3.399	Site 215/226-5, wall, presumably Ottoman (facing south-west)
Fig.	3.400	Site 215/226-6, dam? (facing north- west)
Fig.	3.401	Site 215/226-7, mill on the north side of the Wādī al-'Arab (facing north- east)
Fig.	3.402	Site 215/226-7, mill (facing north- east)
Fig.	3.403	Site 215/226-8, mill (facing east)326
Fig.	3.404	Site 215/226-9, mill (facing north- east)
Fig.	3.405	Site 215/226-9, mill (facing south- east)
Fig.	3.406	215/227-1-001
Fig.	3.407	215/227-1-002
Fig.	3.408	Base ring of a Hellenistic-Early Ro- man bowl WaA 900019-02
Fig.	3.409	Rim of a Roman-Byzantine cooking pot WaA 900019-05
Fig.	3.410	Site 215/227-1, view of collecting basin (facing south)
Fig.	3.411	Rim of a bowl (ETS) WaA 900022- 02
Fig.	3.412	Site 215/227-2, view of the plateaus (facing south)
Fig.	3.413	Site 215/227-3, view of the site with find on the left side of the modern road
Fig.	3.414	Site 215/227-3, detail of the destroy- ed water pipe
Fig.	3.415	Site 216/219-1, surroundings of the modern mosque with cistern (facing east)
Fig.	3.416	Site 216/221-1, Ottoman ruin (facing north)
Fig.	3.417	View of site 216/223-1 (facing north- west)
Fig.	3.418	Site 216/223-1, cistern in modern use

Fig. 3.419 Site 216/223-1, basin in natural rock 339
Fig. 3.420 Site 216/223-1, wall remains
Fig. 3.421 Site 216/223-1, inflow channel of the cistern
Fig. 3.422 216/223-2-001
Fig. 3.423 216/223-2-001
Fig. 3.424 216/223-2-002
Fig. 3.425 216/223-2-003
Fig. 3.426 216/223-2-004
Fig. 3.427 Hellenistic-Roman jar WaA 900077-01348
Fig. 3.428 "Echinus bowl" WaA 900077-02 348
Fig. 3.429 "Megarian cup" WaA 900077-03348
Fig. 3.430 Hellenistic Fish plate WaA 900077-06348
Fig. 3.431 Eastern Sigillata A WaA 900077-07 349
Fig. 3.432 Graffito beneath the handle WaA 900077-14
Fig. 3.433 Mortarium in context 001
Fig. 3.434 Flint WaA 990039-01
Fig. 3.435 Wall remnants in the south of site 216/223-2
Fig. 3.436 Sketch of site 216/223-2 with finds350
Fig. 3.437 Rim of an Early Bronze Age plate WaA 900111-01
Fig. 3.438 Holemouth WaA 900111-07352
Fig. 3.439 Ledge handle WaA 900111-17
Fig. 3.440 Rim of a Roman-Byzantine plate WaA 900111-02353
Fig. 3.441 View of site 216/224-1 (facing east) 353
Fig. 3.442 Hewn stone in the area of site 216/226-1
Fig. 3.443 View of site 216/226-1 (facing south- west)
Fig. 3.444 Site 216/226-2, dam with masonry seam (facing south-east)
Fig. 3.445 Site 216/226-2, dam (facing north- east)

Fig. 3.446	Site 216/226-2, wall at the north side of the Wādī al-'Arab
Fig. 3.447	Site 216/226-3, view into the corridors (facing north)
Fig. 3.448	Rim of a "Galilean bowl" WaA 900113-05365
Fig. 3.449	Decorated Islamic body sherd WaA 900113-11
Fig. 3.450	Flint flakes or tools WaA 990058-01 365
Fig. 3.451	Site 216/228-1, view of the temple (facing north-west)
Fig. 3.452	Entrance of site 217/219-1 (facing west)
Fig. 3.453	View of site 217/219-2 (facing south) 370
Fig 3.454	Site 217/219-2, view of Wali (facing north)
Fig. 3.455	Site 217/219-2, Muslim cemetery (facing north)
Fig. 3.456	Site 217/219-2, wall (facing south) 371
Fig. 3.457	Site 217/219-2, interior of the Wali 371
Fig. 3.457	Site 217/219-2, corner of the wall in the north-east (facing south-west) 372
Fig. 3.458	View of site 217/219-3 (facing east) 373
Fig. 3.459	Site 217/219-3, basin with influx and game board
Fig. 3.460	Site 217/219-3, detail of mosaic pa- vement
Fig. 3.461	Sketch of site 217/219-3
Fig. 3.462	Site 217/223-1, cistern (facing north- west)
Fig. 3.463	Site 217/224-1, grave entrance (fa- cing south-east)
Fig. 3.464	View of site 217/225-1 (facing north) 378
Fig. 3.465	217/227-1-001
Fig. 3.466	Rim of an Islamic bowl WaA900025-40
Fig. 3.467	Base ring (Roman – Umayyad) WaA 900045-09
Fig. 3.468	Site 217/227-1, ashlars in modern exterior wall of a house

Fig. 3.469	Site 217/227-2, view of the site
Fig. 3.470	Site 217/227-2, detail of the quarry with tool marks
Fig. 3.471	View of site 218/217-1 (facing north) 387
Fig. 3.472	View of site 218/217-1 (facing south) 388
Fig. 3.473	Site 218/217-1, trough
Fig. 3.474	View of site 218/219-1 (facing north) 390
Fig. 3.475	Entrance to cistern at site 218/219-1.390
Fig. 3.476	Site 218/219-1, quarry/installation 391
Fig. 3.477	View of site 218/219-2
Fig. 3.478	Interior of the cistern in the eastern part of site 218/219-2
Fig. 3.479	Shaft beginning in the interior of the cistern in the eastern part of site 218/219-2
Fig. 3.480	Site 218/219-2, cross-shaped inci- sion
Fig. 3.481	Site 218/219-2, game board
Fig. 3.482	Site 218/219-2, wall remains (facing north)
Fig. 3.483	Site 218/219-2, opening of another cistern
Fig. 3.484	View of site 218/219-2
Fig. 3.485	Site 218/219-2, entrance to the cis- tern
Fig. 3.486	Site 218/219-2, game board
Fig. 3.487	218/221-1-001
Fig. 3.488	218/221-1-002
Fig. 3.489	Rim of a holemouth (EBA) WaA 900085-01405
Fig. 3.490	Rim to base of a Hellenistic bowl WaA 900084-05405
Fig. 3.491	Rim of a Hellenistic "Echinus bowl" WaA 900084-08405
Fig. 3.492	Rim of a Roman-Byzantine bowl WaA 900084-04405
Fig. 3.493	Handle of a Hellenistic amphora with stamp impression of a female figure in movement WaA 900084-31406

Fig. 3.494	Rim of a Roman-Byzantine pithos WaA 900083-06406
Fig. 3.495	Painted body sherd (Byzantine-Is- lamic) WaA 900084-13406
Fig. 3.496	Rim of an Islamic bowl WaA 900083-07407
Fig. 3.497	Rim of a Mamluk jar WaA 900084-16407
Fig. 3.498	Rim of a cup (Byzantine-Umayyad) WaA 990026-01407
Fig. 3.499	Base of an Umayyad beaker WaA 990026-03407
Fig. 3.500	View of site 218/221-1 (facing south)408
Fig. 3.501	218/224-1-001
Fig 3.502	218/224-1-002
Fig. 3.503	View of site 218/224-1 (facing south- east)
Fig. 3.504	218/224-2-001
Fig. 3.505	218/224-2-002
Fig. 3.506	View of site 218/227-1
Fig. 3.507	Rim of an Early Bronze Age co- oking pot WaA 900086-12419
Fig. 3.508	Rim of an Early Bronze Age pithos WaA 900086-17419
Fig. 3.509	Rim to base of an Early Bronze Age plate WaA 900086-16420
Fig. 3.510	Rim of an Early Bronze Age bowl WaA 900086-24420
Fig. 3.511	Weight WaA 990043-01420
Fig. 3.512	Limestone bowl WaA 990044-01421
Fig. 3.513	Site 219/221-1, cistern with ring made of rock
Fig. 3.514	View of site 219/221-1 (facing north- west)
Fig. 3.515	Spout WaA 900026-02423
Fig. 3.516	Site 219/222-1, remnants in the vil- lage centre (facing north)424
Fig. 3.517	Site 219/223-1, cistern with agricul- tural installation (facing south-west) 425

Fig.	3.518	Mirror of a Roman-Byzantine oil lamp WaA 900028-02426
Fig.	3.519	View of site 219/224-1 (facing south- east)
Fig.	3.520	Site 219/224-2, agricultural installa- tion
Fig.	3.521	Painted Roman-Byzantine body sherd WaA 900029-04429
Fig.	3.522	View of site 219/224-3 (facing north- east)430
Fig.	3.523	Site 219/224-4, agricultural installa- tion
Fig.	3.524	Site 219/224-5, entrance to the cistern (facing south)432
Fig.	3.525	Site 219/224-5, sketch of the cistern . 432
Fig.	3.527	219/226-1-001
Fig.	3.528	219/226-1-002
Fig.	3.529	219/226-1-002
Fig.	3.530	219/226-1-003
Fig.	3.531	View of site 219/226-1, in the back- ground to the left: Is'arā
Fig.	3.532	219/227-1-001
Fig.	3.533	219/227-1-002 and -003438
Fig.	3.534	219/227-1-002 and -003
Fig.	3.535	219/227-1-004
Fig.	3.536	219/227-1-005
Fig.	3.537	219/227-1-006
Fig.	3.538	219/227-1-007
Fig.	3.539	219/227-1-008
Fig.	3.540	219/227-1-009
Fig.	3.541	219/227-1-010
Fig.	3.542	219/227-1-011
Fig.	3.543	219/227-1-012
Fig.	3.544	219/227-1-013
Fig.	3.545	219/227-1-014
Fig.	3.546	Rim of an Early Bronze Age bowl WaA 900042-19462

Fig. 3.547	Rim of a bowl (MBA/LBA) WaA 900042-298462
Fig. 3.548	Painted body sherd of a Late Bronze Age jar WaA 900042-52462
Fig. 3.549	Rim of a jar (LBA/IA) WaA 900042-35462
Fig. 3.550	Rim of an Iron Age jar WaA 900042-27463
Fig. 3.551	Rim of an Iron Age jar WaA 900042-27463
Fig. 3.552	Rim of an Iron Age jar WaA 900042-27463
Fig. 3.553	Spout of a jar or jug (Roman – Um- ayyad) WaA 900042-230463
Fig. 3.554	Rim of a Byzantine-Islamic bowl or krater WaA 900042-26464
Fig. 3.555	Base of an Islamic bowl WaA 900042-252464
Fig. 3.556	Rim of a Mamluk bowl WaA 900042-109464
Fig. 3.557	Sickle made of flint/silex WaA 990016-01464
Fig. 3.558	Base of an Early Bronze Age bowl WaA 900041-76476
Fig. 3.559	Rim of an Iron Age II jar WaA 900041-23476
Fig. 3.560	Rim of a Roman-Byzantine bowl WaA 900041-37476
Fig. 3.561	Mirror of a Byzantine-Umayyad oil lamp WaA 900041-215476
Fig. 3.562	Rim of a Byzantine-Islamic bowl WaA 900041-31477
Fig. 3.563	Rim of a Byzantine-Islamic bowl WaA 900041-13477
Fig. 3.564	Handle of an Early Bronze Age jar WaA 900052-26486
Fig. 3.565	Rim of a Late Bronze Age jar WaA 900052-141486
Fig. 3.566	Rim of an Iron Age bowl WaA 900052-94486
Fig. 3.567	Spout (Roman – Umayyad) WaA 900052-13486

Fig. 3.568	Handle of a jar or a jug (Byzantine – Islamic) WaA 900052-31487
Fig. 3.569	Rim of a Mamluk krater WaA 900052-15487
Fig. 3.570	Bracelet WaA 990008-01487
Fig. 3.571	Foot of a bowl made from basalt WaA 990013-01488
Fig. 3.572	Sickle blade WaA 990015-01488
Fig. 3.573	Rim of an Early Bronze Age plate WaA 900054-107496
Fig. 3.574	Handle of a jar (MBA/LBA/IA) WaA 900054-24496
Fig. 3.575	Handle of a jar (MBA/LBA/IA) WaA 900054-45496
Fig. 3.576	Rim of an Iron Age bowl WaA 900054-105496
Fig. 3.577	Iron Age oil lamp WaA 900054-96497
Fig. 3.578	Cooking pot TZ CP 2 (Iron Age II) WaA 900054-76497
Fig. 3.579	Rim of a jar/jug (Roman – Umay- yad) WaA 900054-114497
Fig. 3.580	Rim of a bowl (Roman – Umayyad) WaA 900054-141497
	Body sherd of an Early Bronze Age jar WaA 900053-03511
Fig. 3.582	Body sherd with handle base of an Early Bronze Age jar WaA 900053-20
	Base of an Early Bronze Age bowl WaA 900053-154 511
Fig. 3.584	Rim of an Early Bronze Age bowl WaA 900053-180 511
Fig. 3.585	Miniature bowl Early or Middle Bronze Age WaA 900053-151
Fig. 3.586	Rim of Middle Bronze Age cooking pot WaA 900053-02512
Fig. 3.587	MBA body sherd with herringbone pattern WaA 900053-15512
Fig. 3.588	Double handle of a Middle Bronze Age jar WaA 900053-98512
Fig. 3.589	Lid, possibly used as grindstone (MBA/LBA) WaA 900053-18 513

Fig. 3.590	Body sherd of a Late Bronze Age jar WaA 900053-05
Fig. 3.591	Handle of a jar with engraved cross (MBA/LBA/IA) WaA 900053-47 513
Fig. 3.592	Base-Pedestal of a chalice (MBA/ LBA/IA) WaA 900053-76513
Fig. 3.593	Rim of an Iron Age jar WaA 900053-200514
Fig. 3.594	Rim of an Iron Age II jar WaA 900053-224
Fig. 3.595	Rim of a cooking pot CP 4 TZ (Iron Age II) WaA 900053-123
Fig. 3.596	Body sherd with handle base of a bottle (Roman – Byzantine) WaA 900053-54
Fig. 3.597	Handle of an Islamic jar WaA 900053-59
Fig. 3.598	View of Tall Raʿān (Tall Kinise) (fa- cing south-east)
Fig. 3.599	View of a quarry at site 219/228-1 (facing north-east)
Fig. 3.600	View of site 219/233-1/spur 519
Fig. 3.601	Site 219/233-1, modern toilet 520
Fig. 3.602	View of site 220/215-1 521
Fig. 3.603	View of the former excavation at site 220/215-1
Fig. 3.604	Site 220/215-1, view of the tall facing east into the Wādī
Fig. 3.605	View of site 220/215-2 (facing south-east)
Fig. 3.606	Site 220/215-2, agricultural installa- tion (facing west)
Fig. 3.607	The modern village Dēr as-Si'na with remnants of antique architec- ture
Fig. 3.608	Remnants of Ottoman architecture close to Dēr as-Si'na
Fig. 3.609	Rim of an Iron Age jar WaA 900138- 01
	Base ring of Byzantine-Umayyad jar or amphora WaA 900138-05 527
Fig. 3.611	Site 220/217-1, hewn ashlar527

Fig. 3.612	Site 220/217-1, section facing north 528
Fig. 3.613	View of site 220/217-1 (facing south) 528
Fig. 3.614	View of site 220/219-1 (facing east)530
Fig. 3.615	Site 220/219-1, architectural ele-
	ment/ashlar
	Site 220/219-1, quarry 531
-	220/220-1-001
•	220/220-1-002
Fig. 3.619	Handle with rim of a cooking pot (Hellenistic – Byzantine) WaA 900087-16538
Fig. 3.620	Rim of a bowl (Roman – Byzantine) WaA 900087-14538
Fig. 3.621	Handle with body sherd of a jar (Ro- man – Byzantine) WaA 900088-06538
Fig. 3.622	Painted body sherd of a jars or bowl (Byzantine – Umayyad) WaA 900087-26538
Fig. 3.623	Fragment of a handle WaA 990026-02539
Fig. 3.624	220/224-1-001
Fig. 3.625	220/224-1-002
Fig. 3.626	220/224-1-002
Fig. 3.627	220/224-1-003
Fig. 3.628	220/224-1-004
Fig. 3.629	220/224-1-005
Fig. 3.630	220/224-1-006
Fig. 3.631	220/224-1-007
Fig. 3.632	220/224-1-007
Fig. 3.633	Body sherd with handle base of a rhomboid amphora WaA 900068-67 553
Fig. 3.634	Rim of an ESA bowl WaA 900068-10553
Fig. 3.635	Rim of a bowl Late Roman C-Ware, Form 3 F WaA 900068-07554
Fig. 3.636	Rim of a bowl Late Roman C-Ware, Form 10 A WaA 900068-08554
Fig. 3.637	Spout with sieve (Byzantine – Islamic) WaA 900068-66554

Fig. 3.638	Lid or token from a Mamluk body sherd WaA 900068-55554
Fig. 3.639	Metal object WaA 990017-01 555
Fig. 3.640	Pedestal of a goblet WaA 990029-04555
Fig. 3.641	Sketch of site 220/224-1 with con- texts
Fig. 3.642	View of site 220/224-1 (facing south-east)556
Fig. 3.643	Site 220/224-1, looting pit, in it wall visible
Fig. 3.644	220/225-1-001
Fig. 3.645	220/225-1-003
Fig. 3.646	220/225-1-004
Fig. 3.647	220/225-1-005559
Fig. 3.648	220/225-1-006
Fig. 3.649	220/225-1-007
Fig. 3.650	220/225-1-008
Fig. 3.651	Site 220/225-1, agricultural installa- tion (press)
Fig. 3.652	Site 220/225-1, quarry564
Fig. 3.653	Site 220/227-1, quarry (facing north-west)
Fig. 3.654	Glass base WaA 990009-02567
Fig. 3.655	Fragment of a bracelet WaA 990012-01567
Fig. 3.656	Site 220/227-2, agricultural installa- tion
Fig. 3.657	Body sherd with handle base (Ro- man – Byzantine) WaA 900112-29 574
Fig. 3.658	Spout of a jar or jug (Roman – By- zantine) WaA 900112-40 574
Fig. 3.659	Weight made from basalt WaA 990045-01574
Fig. 3.660	Ashlar on the Hirbat Malkā (facing north)
Fig. 3.661	Site 220/231-2, access to the spring (facing south-east)
Fig. 3.662	View of site 220/232-1
Fig. 3.663	Site 220/232-1, wall remnants

Fig. 3.664	Site 220/232-1, cistern578
Fig. 3.665	Site 221/215-1, basin (facing north) 579
Fig. 3.666	Site 221/215-1, quarry (facing north) 580
Fig. 3.667	Site 221/216-1, modern development next to the quarry
Fig. 3.668	Site 221/216-1, quarry (facing east) 581
Fig. 3.669	Blade fragments WaA 990070-01 582
Fig. 3.670	View of site 221/216-2 (facing east)583
Fig. 3.671	Site 221/216-2, wall next to the mo- dern road
Fig. 3.672	Site 221/216-2, cistern north of the modern road
Fig. 3.673	Site 221/217-1, building ruin with spolia, in the background the mo- dern mosque
Fig. 3.674	221/219-1-001
Fig. 3.675	Rim of a bowl, Late Roman C Ware, Form 3 F WaA 900089-40590
Fig. 3.676	Rim of a Roman-Byzantine jar WaA 900089-24
Fig. 3.677	Handle of a Dyranting Unarrised
1 Ig. 5.077	Handle of a Byzantine-Umayyad pan WaA 900089-02591
_	
Fig. 3.678	pan WaA 900089-02591 Rim of an Islamic bowl or krater
Fig. 3.678 Fig. 3.679	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682 Fig. 3.684	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682 Fig. 3.684 Fig. 3.685	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682 Fig. 3.684 Fig. 3.685 Fig. 3.686	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682 Fig. 3.684 Fig. 3.685 Fig. 3.686 Fig. 3.686	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682 Fig. 3.684 Fig. 3.685 Fig. 3.686 Fig. 3.687 Fig. 3.688	pan WaA 900089-02
Fig. 3.678 Fig. 3.679 Fig. 3.680 Fig. 3.681 Fig. 3.682 Fig. 3.684 Fig. 3.685 Fig. 3.686 Fig. 3.687 Fig. 3.688 Fig. 3.688 Fig. 3.689	pan WaA 900089-02

Fig. 3.692	221/223-1-004
Fig. 3.693	221/223-1-005
Fig. 3.694	221/223-1-006600
Fig. 3.695	Rim of Iron Age cooking pot WaA 900076-01602
Fig. 3.696	Mirror of Hellenistic oil lamp WaA 900076-19602
Fig. 3.697	Base ring of Hellenistic "fish plate" WaA 900076-28603
Fig. 3.698	Base of ESA bowl WaA 900076-29 .603
Fig. 3.699	Rim of a jug or krater (Byz-Isl) WaA 900076-02603
Fig. 3.700	Rim of a Roman bowl WaA 990030-01603
Fig. 3.701	View of site 221/223-1 (facing west) 604
Fig. 3.702	Site 221/223-1, looting pit on the crest604
Fig. 3.703	Blade fragment WaA 990019-01606
Fig. 3.704	Glass fragment WaA 990031-01606
Fig. 3.705	View of site 221/225-1 (facing north- east)606
Fig. 3.706	View of site 221/229-1607
Fig. 3.707	Site 222/215-1, entrance of the grave (facing west)
Fig. 3.708	Site 222/215-1, interior of the grave with at least four loculi (facing west)
Fig. 3.709	Site 222/215-2, dolmen610
Fig. 3.710	View of site 222/216-1 (facing north)
Fig. 3.711	Site 222/216-1, entrance to the cis- tern
Fig. 3.712	Site 222/216-1, remnants of dolmen.613
Fig. 3.713	Site 222/216-1, view of the excava- tion (facing south)
Fig. 3.714	Rim of a cooking pot (IA I / IA II) WaA 900092-02616
Fig. 3.715	Decorated body sherd (Byzantine – Islamic) WaA 900092-06616
Fig. 3.716	View of site 222/221-1 (facing east) 617

Fig. 3.717	Site 222/221-1, wall remains, sec- tion (facing north-west)
Fig. 3.718	Site 222/221-1, stone ashlars618
Fig. 3.719	222/223-1-001
Fig. 3.720	222/223-1-002619
Fig. 3.721	Rim of a jug (Byzantine – Islamic) WaA 900081-07620
Fig. 3.722	Site 222/223-1, view of the area with modern cemetery (facing west) 621
Fig. 3.723	Site 222/223-1, view of the site with cistern (facing west)
Fig. 3.724	Sketch plan of site 222/223-1622
Fig. 3.725	222/223-2-001
Fig. 3.726	222/223-2-002
Fig. 3.727	Site 222/223-2, oil press (facing north)624
Fig. 3.728	Site 222/223-2, basin (facing south).624
Fig. 3.729	View of context 222/223-1-001 and -002 (facing south)625
Fig. 3.730	Site 222/225-1, view of the spring 626
Fig. 3.731	View of site 222/226-1 (facing north)627
Fig. 3.732	Site 223/217/1, ruin with spolia in the village centre (facing south-east)
Fig. 3.733	Site 223/218-1, cover of cistern631
Fig. 3.734	Site 223/218-1, remains of a dolmen at the south-eastern slope
Fig. 3.735	View of site 223/218-1 (facing south)632
Fig. 3.736	Handle with body sherd of a jug (Roman – Umayyad) WaA 900093-01633
Fig. 3.737	Bottom – base ring of a Hellenistic- Roman bowl or jug WaA 900093-05633
Fig. 3.738	Site 223/219-1, looting pit with co- lumn drum634
Fig. 3.739	Site 223/219-1, profile with pottery634
Fig. 3.740	Site 223/219-1, amphora and coin from illegal digs of residents

Fig. 3.741	Rim of a cooking pot (IA IIA/B) WaA 900107-10637	Fi Fi
Fig. 3.742	Rim of a jug or krater (Byz-Isl) WaA 900107-10637	Fi
Fig. 3.743	Fragment of a sickle WaA 990020-01638	Fi Fi
Fig. 3.744	View of site 223/225-1, Hirbat al- Quṣēr Fū'arā (facing south)	Fi Fi
Fig. 3.745	View of site 223/225-1, Hirbat al- Quṣēr Fū'arā (facing south-east)639	Fi
Fig. 3.746	View of site 223/225-3640	
Fig. 3.747	223/225-4-001	Fi
Fig. 3.748	223/225-4-002	Fi
Fig. 3.749	223/225-4-003	
Fig. 3.750	223/225-4-004	Fi
Fig. 3.752	223/225-4-005	Fi
Fig. 3.753	223/225-4-006	Fi
Fig. 3.754	223/225-4-007	Б:
Fig. 3.755	223/225-4-008	Fi
Fig. 3.756	223/225-4-009	Fi
Fig. 3.757	Handle with body sherd of a jar or an amphora (Roman – Byzantine) WaA 900122-06647	Fij Fij
Fig. 3.758	Handle with body sherd of a jar or an amphora (Roman – Byzantine) WaA 900122-07647	Fi
Fig. 3.759	Base-pedestal of a jar or a jug (Ro- man – Byzantine) WaA 900122-04648	Fi Fi
Fig. 3.760	Handle with body sherd of a jar or an amphora (Byzantine – Umayyad) WaA 900122-05648	Fij Fij
Fig. 3.761	Rim of a jar or an amphora (Byzan- tine – Umayyad) WaA 900122-01648	Fi Fi
Fig. 3.762	Rim of a basin (Byzantine – Umay- yad) WaA 900126-01648	Fi Fi
Fig. 3.763	Flint blade WaA 990068-01 and flint flake WaA 990068-02649	Fi
Fig. 3.764	Sketch plan of site 223/225-4	11
Fig. 3.765	View of the site (facing north)650	Fi
Fig. 3.766	View of the site (facing west)	

	Fig. 3.767	223/227-1-001
37	Fig. 3.768	223/227-1-002
37	Fig. 3.769	223/227-1-003652
	Fig. 3.770	223/227-1-004
38	Fig. 3.771	223/227-1-004
	Fig. 3.772	Sketch plan of site 223/227-1-004654
38	Fig. 3.773	Base – base ring of a Hellenistic – Roman bowl WaA 900108-01
39 40	Fig. 3.774	Rim of a bowl (Late Roman C Ware Form 4 F) WaA 900108-15657
41	Fig. 3.775	Weight WaA 990055-01657
42 42	Fig. 3.776	View of site 223/227-1 (facing south- east)
43	Fig. 3.777	Ruins in Hatim (facing south)659
43	Fig. 3.778	View of site 224/212-1 (facing west).660
14	Fig. 3.779	Site 224/212-2, wall (alignment north-south)
14 45	Fig. 3.780	Site 224/212-2, wall (alignment east- west)
45	Fig. 3.781	224/217-1-001
	Fig. 3.782	Byzantine oil lamp
47	Fig. 3.783	View from the site towards the Tall aš-Ši'r (Tall Usher) (facing north- east)
47	Fig. 3.784	Blade fragment WaA 990069-01665
.,	Fig. 3.785	Site 224/217-2, shaft grave666
48	Fig. 3.786	View of site 224/217-2666
	Fig. 3.787	Site 224/217-3, dolmen667
48	Fig. 3.788	224/221-1-001
	Fig. 3.789	224/221-1-002
48	Fig. 3.790	224/221-1-003
48	Fig. 3.791	224/221-1-004
	Fig. 3.792	Base of an Early Bronze Age jar or krater WaA 900050-08672
49 49		Rim of a Roman-Byzantine jug or jar WaA 900059-02672
50	Fig. 3.794	Rim of an Early Bronze Age krater WaA 900079-01 677

Fig.	3.795	Rim of an Iron Age bowl WaA 900079-03677
Fig.	3.796	Rim of a Hellenistic-Roman jar WaA 900079-23677
Fig.	3.797	Rim of an ESA bowl WaA 900079-18677
Fig.	3.798	Rim of a bowl (Late Roman C Ware Form 3 F) WaA 900079-12678
Fig.	3.799	Rim of a Byzantine-Islamic bowl WaA 900079-11678
Fig.	3.800	Tapered lamp base WaA 990032-01678
Fig.	3.801	Base ring of a Hellenistic-Roman bowl or plate WaA 900080-25
Fig.	3.802	Base ring of a Hellenistic-Roman bowl or plate WaA 900080-26
Fig.	3.803	View from site 224/221-1 to the Wādī al-'Arab
Fig.	3.804	Quarry at the western slope of site 224/223-1 (facing north-west)
Fig.	3.805	Handle with relief strip (Byzantine – Islamic) WaA 900075-01687
Fig.	3.806	View of site 224/225-1 (facing south)
Fig.	3.807	View of site 224/228-1
Fig.	3.808	Site 224/230-1, ruin with arch made of basalt (facing north-west)690
Fig.	3.809	View of site 225/215-1 (facing north- east)
Fig.	3.810	Site 225/215-1, stone blocks at the outskirts of the field692
Fig.	3.811	Site 225/215-1, remnants of a dol- men
Fig.	3.813	View of site 225/216-1, Tall Kafr Yūbā (facing east)694
Fig.	3.814	View of site 225/216-1, Tall Kafr Yūbā (facing west)694
Fig.	3.815	Stone vessel at site 225/216-1, Tall Kafr Yūbā695
Fig.	3.816	Wall in the north of site 225/216-1, Tall Kafr Yūbā
Fig.	3.817	225/218-1-001697

Fig. 3.818 Rim of an Early Bronze Age hole- mouth WaA 900082-09699
Fig. 3.819 Rim of an Iron Age jar WaA 900049-03699
Fig. 3.820 Rim of a cooking pot (Iron Age II) WaA 900082-04700
Fig. 3.821 Body sherd with handle base (Helle- nistic-Roman) WaA 900082-05700
Fig. 3.822 Rim of a Roman-Byzantine jar WaA 900082-07700
Fig. 3.823 Rim of an Islamic jar or krater WaA 900082-06700
Fig. 3.825 Tall aš-Šiʻr (Tall Usher) (view facing east)701
Fig. 3.826 Enclosing wall on the eastern site of site 225/218-1, Tall aš-Šiʻr701
Fig. 3.827 Site 225/222-1, oil or wine press (fa- cing west)704
Fig. 3.828 Rim of an Islamic dinos WaA
900098-01705
Fig. 3.829 View of site 225/222-2
Fig. 3.829 View of site 225/222-2
Fig. 3.829 View of site 225/222-2 705 Fig. 3.830 Cistern in the west of site 225/222-2 706 Fig. 3.831 View of site 225/223-1 (facing the
Fig. 3.829 View of site 225/222-2 705 Fig. 3.830 Cistern in the west of site 225/222-2 706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) 711
Fig. 3.829 View of site 225/222-2
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site 225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site 225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714
Fig. 3.829 View of site 225/222-2
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site 225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714 Fig. 3.845 225/22-1-004 .714 Fig. 3.836 225/22-1-005 .715
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site .225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714 Fig. 3.845 225/22-1-004 .714 Fig. 3.836 225/22-1-005 .715 Fig. 3.837 225/22-1-006 .715
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site .225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714 Fig. 3.845 225/22-1-004 .714 Fig. 3.836 225/22-1-005 .715 Fig. 3.837 225/22-1-006 .715 Fig. 3.838 225/22-1-007 .716
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site .225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714 Fig. 3.836 225/22-1-004 .714 Fig. 3.837 225/22-1-005 .715 Fig. 3.838 225/22-1-006 .715 Fig. 3.838 225/22-1-007 .716 Fig. 3.839 225/22-1-008 .716
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site .225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714 Fig. 3.836 225/22-1-004 .714 Fig. 3.836 225/22-1-005 .715 Fig. 3.837 225/22-1-006 .715 Fig. 3.838 225/22-1-007 .716 Fig. 3.839 225/22-1-008 .716 Fig. 3.840 225/22-1-009 .717
Fig. 3.829 View of site 225/222-2 .705 Fig. 3.830 Cistern in the west of site .225/222-2 .706 Fig. 3.831 View of site 225/223-1 (facing the Wādī) .711 Fig. 3.832 225/22-1-001 .713 Fig. 3.833 225/22-1-002 .713 Fig. 3.834 225/22-1-003 .714 Fig. 3.834 225/22-1-004 .714 Fig. 3.836 225/22-1-005 .715 Fig. 3.837 225/22-1-006 .715 Fig. 3.838 225/22-1-007 .716 Fig. 3.839 225/22-1-008 .717 Fig. 3.841 225/22-1-009 .717 Fig. 3.841 225/22-1-010 .717

Fig. 3.845	225/225-1-014719
Fig. 3.846	225/225-1-015720
Fig. 3.847	225/225-1-016720
Fig. 3.848	Rim of a Middle Bronze Age cook- ing pot WaA 900072-24730
Fig. 3.849	Handle with rim of a Roman-Byzan- tine jar WaA 900072-23730
Fig. 3.850	Spout of a Roman-Byzantine jug or jar WaA 900072-82731
Fig. 3.851	Painted rim of a jar (Roman – Um- ayyad) WaA 900072-20731
Fig. 3.852	Byzantine cooking bowl with vertical handle WaA 900072-87731
Fig. 3.854	Rim of a Byzantine-Islamic pithos WaA 900072-18731
Fig. 3.855	Rim of a Byzantine-Islamic bowl WaA 900072-02732
Fig. 3.856	Rim of an Islamic glazed bowl WaA 900072-14732
Fig. 3.857	Rim of a Mamluk bowl WaA 900072-40732
Fig. 3.858	Body sherd of a Mamluk bowl or krater WaA 900072-59732
Fig. 3.859	Base of a beaker (Roman – Umay- yad) WaA 990035-02733
Fig. 3.860	Base of a balsamarium WaA 990035-03733
Fig. 3.861	Glass handle with body sherd WaA 990035-05733
Fig. 3.862	Limestone object WaA 990047-01 733
Fig. 3.863	View of site 225/225-1734
Fig. 3.864	Site 225/225-1, new construction possibly at the location of a Byzanti- ne church734
Fig. 3.865	Site 225/225-1, hewn basalt stone 735
Fig. 3.866	Site 225/225-1, hewn limestone735
Fig. 3.867	Rim of a Mamluk jar WaA 900120-06737
Fig. 3.868	View of site 225/225-2 (facing north)738

F	Fig. 3.869	Site 225/225-2, basins hewn into the bedrock738
F	Fig. 3.870	Site 225/225-2, basins hewn into the bedrock739
ł	Fig. 3.871	Site 225/225-2, stepped installation hewn into the bedrock739
F	Fig. 3.872	Site 225/225-2, cistern740
F	Fig. 3.873	Sketch plan of site 225/225-3741
F	Fig. 3.874	Site 225/225-3, grave cut into in the natural rock
F	Fig. 3.875	Site 225/225-3, arcosolium742
F	Fig. 3.876	View of Hām with the Tall Hām to the left and medieval buildings to the right (facing south)743
F	Fig. 3.877	Tall Hām (facing south-east)744
ł	Fig. 3.878	Secondary use of stone basin on Tall Hām744
F	Fig. 3.879	Site 226/213-2, dolmen745
F	Fig. 3.880	Site 226/213-3, Ottoman house (fa- cing west)746
F	Fig. 3.881	Rim of a jar (Roman – Umayyad) WaA 900091-12750
F	-	Body sherd with handle base of a jar (Byzantine – Umayyad) WaA 900091-21750
ł	Fig. 3.883	View of site 226/221-1 with concre- ted cistern (facing north-east)750
F	Fig. 3.884	Site 226/221-1, ashlars pushed to the edge of the field
F	Fig. 3.885	Site 226/221-1, cistern751
F	Fig. 3.886	Rim of an Early Bronze Age bowl WaA 900099-07753
F	Fig. 3.887	Rim of a Late Bronze Age bowl WaA 900099-09753
F	Fig. 3.888	Rim of a pithos (Iron Age II) WaA 900099-06754
F	Fig. 3.889	Rim of a Byzantine-Islamic jar WaA 900099-03754
F	Fig. 3.890	View of the southern area of site 226/222-1 (facing south-east)

Fig. 3.891	Rim of an Iron Age II cooking pot WaA 900100-30760
Fig. 3.892	Base ring of a Hellenistic-Roman bowl WaA 900100-61760
Fig. 3.893	Rim of a Byzantine-Islamic jar WaA 900100-21760
Fig. 3.894	Islamic pipe bowl WaA 900100-67760
Fig. 3.895	Blade of a knife WaA 990021-01 761
Fig. 3.896	Hammer stone WaA 990041-01 761
Fig. 3.897	View of site 226/223-1 with ruin (fa- cing north)761
Fig. 3.889	Column drum built in as spolia762
Fig. 3.899	Site 226/223-1, well762
Fig. 3.900	Site 226/223-1, ruin of the saint's grave (facing east)762
Fig. 3.901	View of site 226/223-2763
Fig. 3.902	Rim of a bowl WaA 900155-01764
Fig. 3.903	View of site 226/222-3 with two graves
Fig. 3.904	View of the excavation site 227/211-1
Fig. 3.905	Site 227/211-1, Late Bronze Age 767
Fig. 3.906	View of the Tall (facing west)768
Fig. 3.907	Body sherd with carination WaA 990063-01769
Fig. 3.908	View of the Tall (facing west)770
Fig. 3.909	Rim of a jar (Rom – Umayyad) WaA 900102-05
Fig. 3.910	Basalt bowl WaA 990048-01773
Fig. 3.911	Site 227/225-1, entrance to the grave 774
Fig. 3.912	Site 227/225-1, new construction of the mosque774
Fig. 3.913	Site 227/225-1, mosaic in the Department of Antiquities in Bēt Rās 775
Fig. 3.914	Site 227/226-1, Ottoman ruin
Fig. 3.915	View of site 227/227-1779
Fig. 3.916	View of site 227/229-1

Fig. 3.917	Site 227/229-1, tunnel in connection with the water pipes780
Fig. 3.918	Site 227/230-1, basalt sarcophagus in the cave
Fig. 3.919	Site 227/230-1, mill782
Fig. 3.920	Site 227/230-1, oil press782
Fig. 3.921	View of site 228/213-1783
Fig. 3.922	Structure in the north-east of site 228/213-1784
Fig. 3.923	Structure in the south site 228/213-1 784
Fig. 3.924	228/213-2-00785
Fig. 3.925	228/213-2-002
Fig. 3.926	Three of at least 22 shaft graves at site 228/213-2 (facing north)
Fig. 3.927	View of site 228/213-2 (facing north)787
Fig. 3.928	View of site 228/213-1 to -5787
Fig. 3.929	View of site 228/213-3 (facing south, as seen from site 228/213-2)
Fig. 3.930	Semicircular structure at site 228/213-4 (facing west)790
Fig. 3.931	Site 228/213-5, interior with loculi, ossuary lid and sarcophagus (facing north)
Fig. 3.932	Wādī Nāțfa below site 228/213-5792
Fig. 3.933	Rim of an Islamic bowl WaA 900095-02794
Fig. 3.934	Rim of an Islamic pithos WaA 900095-03794
Fig. 3.935	View of site 228/221-1 (facing north- west)
Fig. 3.936	Site 228/221-1, ashlar masonry in looting pit (facing north)795
Fig. 3.937	Site 228/221-1, ashlar masonry in looting pit (facing south-west)
Fig. 3.938	Handle of a Hellenistic-Roman jar or jug WaA 900096-09797
Fig. 3.939	Rim of a Roman-Byzantine bowl WaA 900096-04797

Fig. 3.940 Site 228/222-1, basin with inlet (facing north).....797

8	Site 228/222-1, grave (facing north).798
Fig. 3.942	Site 228/222-1, cistern with stone lid (facing north-east)798
Fig. 3.943	228/222-2-001
Fig. 3.944	228/222-2-001800
Fig. 3.945	Base ring of an Early Bronze Age jug or jar WaA 900097-20802
Fig.3.946	Rim of an Iron Age II jar WaA 900097-10802
Fig. 3.947	Base of a Roman jar or jug WaA 900097-18802
Fig. 3.948	Rim of a Roman jar WaA 900097-05802
Fig. 3.949	Rim of a Roman-Byzantine cooking pot WaA 900097-07803
Fig. 3.950	Two sickle blades WaA 990022-01803
Fig. 3.951	Foot of a tripod bowl WaA 990050-01803
Fig. 3.952	Rim to base of basalt bowl WaA 990051-01803
Fig. 3.953	228/223-1-001
Fig. 3.954	228/223-1-001
Fig. 3.954 Fig. 3.955	228/223-1-001
Fig. 3.954 Fig. 3.955 Fig. 3.956	228/223-1-001
Fig. 3.954 Fig. 3.955 Fig. 3.956 Fig. 3.957	228/223-1-001 804 228/223-1-002 805 228/223-1-003 805 228/223-1-003 806
Fig. 3.954 Fig. 3.955 Fig. 3.956 Fig. 3.957 Fig. 3.958 Fig. 3.959	228/223-1-001
Fig. 3.954 Fig. 3.955 Fig. 3.956 Fig. 3.957 Fig. 3.958 Fig. 3.959	228/223-1-001
Fig. 3.954 Fig. 3.955 Fig. 3.956 Fig. 3.957 Fig. 3.958 Fig. 3.959 Fig. 3.960	228/223-1-001
Fig. 3.954 Fig. 3.955 Fig. 3.956 Fig. 3.957 Fig. 3.958 Fig. 3.959 Fig. 3.960 Fig. 3.961	228/223-1-001

Fig. 3.964 Site 228/223-1, view onto the apsis of the church
Fig. 3.965 View of site 228/236-1 (facing north-west)
Fig. 3.966 Site 228/236-1, grave with niches (facing north-east)
Fig. 3.967 Site 228/236-1, water supply system (facing south)
Fig. 3.968 Site 228/236-1, view into the Yarmūk valley (facing east)
Fig. 3.969 Rim of a cooking pot (IA II) WaA 900104-14
Fig. 3.970 Body sherd with handle base (IA IIC) WaA 900104-22
Fig. 3.971 Rim of a Byzantine-Islamic pithos WaA 900104-07
Fig. 3.972 Sickle fragment WaA 990023-01 818
Fig. 3.973 View of the 229/224-1 (facing north- east)
Fig. 3.974 Site 229/224-1, profile made by bull- dozing in the easst with visible wall remains (facing west)
Fig. 3.975 View of site 229/225-1 (facing south-east)
Fig. 3.976 Fragment of a blade WaA 990024-01
Fig. 3.977 Site 229/231-1, column drum in mo- dern park (facing north-east)
Fig. 3.978 Site 233/229-1, spolia (sarcophagus and lintel) in Ottoman mosque (fa- cing west)825
Fig. 3.979 Site 233/229-1, columns in the inte- rior of the mosque (facing south- east)
Fig. 3.980 Site 233/229-1, traffic island with sarcophagi

LIST OF TABLES

Volume 8.1

Tables of Chapter 1: The Wādī al-'Arab Survey

Tab. 1.1	Chronology of periods in the survey area
Tab. 1.2	Number and type of sites for each period in the survey area
Tab. 1.3	Number and type of Bronze Age sites in the survey area
Tab. 1.4	Number and type of Iron Age sites in the survey area
Tab. 1.5	Number and type of Hellenistic and Roman sites in the survey area
Tab. 1.6	Number and type of Late Roman and Byzantine sites in the survey area

Tab. 1.7	Number and type of Islamic period sites in the survey area
Tab. 1.8	Sites with "Galilean bowls"43
Tab. 1.9	Oil lamp finds in the survey area45
Tab. 1.10	Silex varieties of the Wādī al-'Arab49
Tab. 1.11	Catalogue of flint finds in the survey area54–55
Tab. 1.12	Catalogue of stone vessels in the survey area56
Tab. 1.13	Catalogue of glass finds in the survey area

Tables of Chapter 2: Related Research Projects in the Wādī al-'Arab

Tab. 2.1	Numbers for the site types in Late Roman – Byzantine period
Tab. 2.2	Forward selection results91
Tab. 2.3	Riverine habitat92
Tab. 2.4	Absolute and percentage of site ty- pes with cisterns92
Tab. 2.5	Topographic heterogenity of sites93
Tab. 2.6	Average distance to water of diffe- rent site types93
Tab. 2.7	Distribution of cisterns in relation to the altitude of find sites94

Tab. 2.8	Sample characteristics from cistern	
	1 and 211	3

- Tab. 2.10Parameters for the calculation of the
erosion values in both cisterns 114
- Tab. 2.11Timetable of the geological history
of the Wādī al-'Arab...... 122–123

Volume 8.2

Tables of Chapter 3: Catalogue of Sites

Tab. 3.1	Finds from site 207/224-14–5
Tab. 3.2	Finds from site 208/224-1 12-17
Tab. 3.3	Finds from site 210/224-123
Tab. 3.4	Finds from site 211/224-129–30
Tab. 3.5	Finds from site 211/224-2
Tab. 3.6	Finds from site 211/224-553
Tab. 3.7	Finds from site 211/225-1 57–58
Tab. 3.8	Finds from site 211/225-261–62
Tab. 3.9	Finds from site 211/225-363-65
Tab. 3.10	Finds from site 211/225-773
Tab. 3.11	Finds from site 211/225-877–78
Tab. 3.12	Finds from site 211/225-1187-88
Tab. 3.13	Finds from site 211/225-13
Tab. 3.14	Finds from site 211/225-14101-105
Tab. 3.15	Finds from site 211/225-15 110
Tab. 3.16	Finds from site 211/225-16117-128
Tab. 3.17	Finds from site 211/225-17 135–136
Tab. 3.18	Finds from site 212/221-2 149–150
Tab. 3.19	Finds from site 212/223-1165–171
Tab. 3.20	Finds from site 212-223-1172–178
Tab. 3.21	Finds from site 212-223-1 180–190
Tab. 3.22	Finds from site 212/223-1 192–193
Tab. 3.23	Finds from site 212/223-3 199
Tab. 3.24	Finds from site 212/223-4201
Tab. 3.25	Finds from site 212/223-6206
Tab. 3.26	Finds from site 212/226-1 212
Tab. 3.27	Finds from site 213/226-1220
Tab. 3.28	Finds from site 213/226-2222
Tab. 3.29	Finds from site 213/228-1230
Tab. 3.30	Finds from site 213/228-2
Tab. 3.31	Finds from site 214/222-2240

Tab. 3.32	Finds from site 214/222-3242
Tab. 3.33	Finds from site 214/225-1244
Tab. 3.34	Finds from site 214/225-4249-250
Tab. 3.35	Finds from site 214/225-5252
Tab. 3.36	Finds from site 214/227-1
Tab. 3.37	Finds from site 214/227-3283-292
Tab. 3.38	Finds from site 215/222-1304-306
Tab. 3.39	Finds from site 215/225-1312-314
Tab. 3.40	Finds from site 215/226-1 317
Tab. 3.41	Finds from site 215/227-1
Tab. 3.42	Finds from site 215/227-2
Tab. 3.43	Finds from site 216/223-2
Tab. 3.44	Finds from site 216/224-1351-352
Tab. 3.45	Finds from site 216/226-1 355
Tab. 3.46	Finds from site 216/228-1 363-364
Tab. 3.47	Finds from site 217/219-1
Tab. 3.48	Finds from site 217/219-2
Tab. 3.49	Finds from site 217/227-1
Tab. 3.50	Finds from site 218/217-1
Tab. 3.51	Finds from site 218/219-2
Tab. 3.52	Finds from site 218/221-1 399-404
Tab. 3.53	Finds from site 218/224-1 410
Tab. 3.54	Finds from site 218/224-2 412-413
Tab. 3.55	Finds from site 219/221-1417-419
Tab. 3.56	Finds from site 219/222-1423
Tab. 3.57	Finds from site 219/224-1426
Tab. 3.58	Finds from site 219/224-3429
Tab. 3.59	Finds from site 219/226-1
Tab. 3.60	Finds from site 219/227-1445-461
Tab. 3.61	Finds from site 219/227-1465
Tab. 3.62	Finds from site 219/227-1465-475

Tab. 3.63	Finds from site 219/227-1477-486
Tab. 3.64	Finds from site 219/227-1488-497
Tab. 3.65	Finds from site 219/227-1 498-510
Tab. 3.66	Finds from site 219/233-1 519
Tab. 3.67	Finds from site 220/217-1526
Tab. 3.68	Finds from site 220/219-1529
Tab. 3.69	Finds from site 220/220-1 534–537
Tab. 3.70	Finds from site 220/224-1 545-553
Tab. 3.71	Finds from site 220/225-1 561-563
Tab. 3.72	Finds from site 220/227-2566
Tab. 3.73	Finds from site 220/231-1 570-573
Tab. 3.74	Finds from site 220/232-1577
Tab. 3.75	Finds from site 221/216-2582
Tab. 3.76	Finds from site 221/219-1 587-590
Tab. 3.77	Finds from site 221/223-1 600-602
Tab. 3.78	Finds from site 221/225-1605
Tab. 3.79	Finds from site 222/221-1 615-616
Tab. 3.80	Finds from site 222/223-1620
Tab. 3.81	Finds from site 223/219-1633
Tab. 3.82	Finds from site 223/225-1636-637
Tab. 3.83	Finds from site 223/224-4 646-647
Tab. 3.84	Finds from site 223/227-1654-656
Tab. 3.85	Finds from site 224/212-1660
Tab. 3.86	Finds from site 224/217-1663
Tab. 3.87	Finds from site 224/221-1 671-672
Tab. 3.88	Finds from site 224/221-1673
Tab. 3.89	Finds from site 224/221-1673-677

Tab. 3.90	Finds	from	site	224/	221-1		679-0	680
Tab. 3.91	Finds	from	site	224/	223-1	•••••		685
Tab. 3.92	Finds	from	site	224/	225-1	•••••		687
Tab. 3.93	Finds	from	site	225/	218-1		697–0	699
Tab. 3.94	Finds	from	site	225/	222-2			705
Tab. 3.95	Finds	from	site	225/	223-1			710
Tab. 3.96	Finds	from	site	225/	225-1		721–	730
Tab. 3.97	Finds	from	site	225/	225-2	2	····· ,	736
Tab. 3.98	Finds	from	site	226/	221-1		748–	749
Tab. 3.99	Finds	from	site	226/	222-1		752-	753
Tab. 3.100	Finds	from	site	226/	223-1	•••••	756–	759
Tab. 3.101	Finds	from	site	226/	222-3		····· <i>'</i>	764
Tab. 3.102	Finds	from	site	227/	213-1			769
Tab. 3.103	Finds	from	site	227/	225-1		772–	773
Tab. 3.104	Finds	from	site	227/	226-1	•••••		776
Tab. 3.105	Finds	from	site	227/	227-1		777—	778
Tab. 3.106	Finds	from	site	228/	213-3		······	788
Tab. 3.107	Finds	from	site	228/	213-4	·	······ <i>'</i>	790
Tab. 3.108	Finds	from	site	228/	221-1		······	793
Tab. 3.109	Finds	from	site	228/	222-1	•••••		776
Tab. 3.110	Finds	from	site	228/	222-2		800-	801
Tab. 3.111	Finds	from	site	228/	223-1	•••••	807–	810
Tab. 3.112	Finds	from	site	228/	236-1	•••••		813
Tab. 3.113	Finds	from	site	229/	224-1	•••••		817
Tab. 3.114	Finds	from	site	229/	225-1			820
Tab. 3.115	Finds	from	site	229/	225-1			822
Tab. 3.116	Site na	ames	and	num	bers.		827–	830

LIST OF PLATES

Volume 8.1

Plates of Chapter 1: The Wādī al-'Arab Survey

Plate 1.1 Flint finds in the survey area......53

Plate 1.2 Stone vessels in the survey area57

Plate 1.3 Glass finds in the survey area......63

LIST OF GRAPHS

Volume 8.1

Graphs of Chapter 2: Related Research Projects in the Wādī al-'Arab

Graph 2.1	Multivariate algorithm options avai- lable in Canoco
Graph 2.2	CCA results on natural habitat using all available habitat data
Graph 2.3	CCA ordination using more perma- nent habitat types as environmental variables and new and old settle- ments and single complexes as res- ponse variables. The total variation in the data is 3.07210, explanatory variables account for 40.9% Monte Carlo Permutation Test results on all axes: pseudo-F=1.2, P=0.23890

	The same dataset, but using forward selection in CCA ordination to iden- tify the variation explained by each environmental factor. Total variati- on is 3.07210, explanatory variables account for 35.2 %	91
-	Distribution of sites and cisterns with elevation	93
1	Average soil pore volume in sedi- ments on carbonate and marly rock in Wādī al-'Arab12	27

LIST OF ABBREVIATIONS

Abbreviated Journals and Series

AA	Archäologischer Anzeiger	JRS	Journal of Roman Studies
AAJ	Annual of the Department of Anti-	LA	Liber Annuus
AASOR	quities of Jordan The Annual of the American	MEFRA	Mélanges de l'École française de Rome. Antiquité
	Schools of Oriental Research	MKT	Menschen – Kulturen – Traditionen
ADPV	Abhandlungen des Deutschen Palä- stina-Vereins	NEAEHL	The New Encyclopedia of Archaeo- logical Excavations in the Holy
AJA	American Journal of Archaeology		Land
AW	Antike Welt	OrA	Orient-Archäologie
BASOR	Bulletin of the American Schools of	PEQ	Palestine Exploration Quarterly
	Oriental Research	PSAS	Proceedings of the Seminar for
BibAr	The Biblical Archaeologist		Arabian Studies
BSOAS	Bulletin of the School of Oriental and African Studies (London)	QDAP	Quarterly of the Department of Antiquities of Palestine
DaM	Damaszener Mitteilungen	RB	Revue Biblique
GrRomByzS	St Greek, Roman and Byzantine Stu- dies	SHAJ	Studies in the History and Archaeo- logy of Jordan
IEJ	Israel Exploration Journal	ZDPV	Zeitschrift des Deutschen Palästi-
JA	Journal Asiatique		na-Vereins
JNES	Journal of Near Eastern Studies	ZOrA	Zeitschrift für Orient-Archäologie

Abbreviated Periods

Paleol.	Paleolithic	Rom.	Roman
Neol.	Neolithic	E Rom.	Early Roman
Chalcol.	Chalcolithic	L Rom.	Late Roman
BA	Bronze Age	Byz.	Byzantine
EBA	Early Bronze Age	Isl.	Islamic
MBA	Middle Bronze Age	E Isl.	Early Islamic
LBA	Late Bronze Age	L Isl.	Late Islamic
IA	Iron Age	Um.	Umayyad
IA I	Iron Age I	Abb.	Abbasid
IA II	Iron Age II	Maml.	Mamluk
IA IIC	Iron Age IIC	Ауу.	Ayyubid
Hell.	Hellenistic	Ottom.	Ottoman

by Dieter Vieweger/Jutta Häser

Fig. 0.1 Tall Zirā'a. View from east to west. Photograph taken in 2011 (© APAAME, David Kennedy).

When the German engineer G. Schumacher explored Transjordan in 1885, Tall Zirā'a was among his discoveries¹. He was the first European since the time of the Crusaders to enter the region. However, after thousands of years of prosperity, the valley had changed dramatically during the Ottoman period. The bedouins told Schumacher that the wādī had declined to become a "popular shelter for all sorts of refugees and criminal scum".

Except for a few sugar mills, operated by water power, there were only a few small hamlets. A water flow of about 0.75 m³ per second flowed through the Wādī al-'Arab in June 1885, and the Wādī az-Zaḥar added the same amount of spring water. C. Steuernagel wrote:

 Schumacher 1890, 110. 142 f. Schumacher visited Tall Zirā'a and described remains of rectangular buildings. His observations are published by C. Steuernagel (1926, 81). "Where the valley widens and the water becomes shallow, there are large numbers of trout that are easy to catch. Once while bathing, Schumacher saw a black water snake, almost a metre long. These are said to be very common here and are highly dreaded"².

The archaeologist N. Glueck visited Tall Zirā'a in 1942. He reported the

"singularly imposing and completely isolated hill of Tall Zera'ah (...)"³

and mentioned a water source on the plateau of the tall as the

"result of a natural siphon phenomenon leading the underground flow of the water from the high-

- 2 Steuernagel 1926, 80. Citation is given in English translation; cf. also Schumacher 1890, 142 f. For Schumacher's travels see in general: Schumacher 1886.
- 3 Glueck 1951a, 182 Fig. 71.

er level of the hills beyond down to below the bottom and, as through a pipe piercing its center, up to the top of Tall Zera'ah".

Although the tall⁴ had already attracted attention due to its location and imposing appearance, no intensive research was conducted at this time, because of the hill's location close to the border of Israel in the west (c. 7 km) and Syria in the north (c. 14 km). During the foundation of the State of Israel in 1948 and again during the Six Day War in 1967, the western part of the Wādī al-'Arab was declared by the Jordanians as a military zone. A passage which had been open in all directions for millennia was thus essentially cut off from sections of its surroundings. The territory around Gadara and the Wādī al-'Arab, in the triangle where Jordan, Syria and Israel meet, became the north-westernmost corner of the Hashemite Kingdom, and there was not even a paved road to the tall.

Also the construction of the Wādī al-'Arab Dam in 1978 did not make a significant difference to the *status quo*. The archaeologists who investigated the area within the scope of a rescue survey prior to the dam construction did not appreciate the archaeological potential of the tall, which majestically overlooked the future reservoir.

Another period of time passed until the Oslo Peace Agreement was ratified in 1993, but it was only after the peace treaty between Jordan and Israel, which King Hussein and Prime Minister Yitzhak Rabin signed on October 26, 1994, that the area again became accessible to the public.

D. Vieweger, director of the Biblical Archaeological Institute Wuppertal (BAI) and since 2005 also of the German Protestant Institute of Archaeology (GPIA), travelled many times through the north-western part of Jordan between 1998 and 2000, exploring the area for a suitable tall site, which would serve as an authoritative chronological record for the region's long and important cultural history. He found it in the Wādī al-'Arab.

Tall Zirā'a is located in the middle of the Wādī al-'Arab (*Figs. 0.1* and 0.2), was continuously occupied for at least 5,000 years, and offers an unique insight into the way of life of the region's people. Its outstanding archaeological significance results from the artesian spring in its centre, which creat-

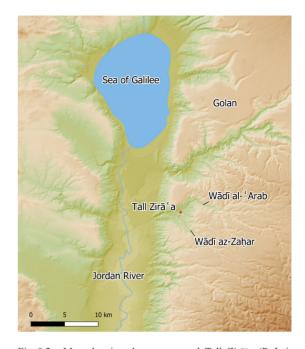


Fig. 0.2 Map showing the area around Tall Zirā'a (P. Leiverkus © BAI/GPIA).

ed optimal settlement conditions over thousands of years. For this reason, Tall Zirā'a offers an unusual opportunity to compile a comparative stratigraphy for northern Jordan from the Early Bronze Age to the Islamic period, while also making it possible to trace cultural developments in urban life, handicrafts and the history of religion over long periods. Moreover, here it is possible to study abundant remains from the Biblical periods in a broad cultural and historical context.

As mentioned above, a major trade route passed through the valley, connecting Egypt in the south with the Syrian-Mesopotamian region in the north (*Fig. 1.22*). The Wādī al-'Arab also connects the Jordan Valley to the Mediterranean coast via the northern Jordan ford at Ğisr al-Mağāmi' (Gešer), as well as the plains of Jezreel and Tall al-Hişn (Beth Shean) to the eastern Jordanian highlands. It was possible to climb from the Jordan Valley, at some 290 m below sea level, to the fertile and very early populated Irbid-Ramtha basin, which lies around 560 m above sea level. Direct routes led from the Irbid-Ramtha basin to Dimašq (Damascus) in the north, Baġdād in the east, and 'Ammān in the south.

⁴ The Arabic word 'tell' or 'tall' as well as the Hebrew word 'tel' will be written in this publication in the standard literary Arab version 'tall' or 'Tall NN'.

3

Because the Yarmuk Valley to the north and the Wādī Ziqlāb in the south are too steep and narrow to serve as major transport routes, the Wādī al-'Arab played a prominent geopolitical role. Not surprisingly, economic success and the hard work of residents across the millennia have left a profusion of traces in the valley. More than 200 sites of human habitation, from the very earliest settlements to the Islamic period, provide an eloquent testimony to the history of this region: settlements, channels, water mills, cisterns, oil presses, wine presses, watchtowers and grave sites.

Tall Zirā'a offered good living conditions for a settlement. The artesian spring offered an unfailing water supply, and the hill provided security. The tall rises impressively (depending on the direction) between 22–45 m above ground. As the only prominent natural elevation in the lower Wādī al-'Arab, Tall Zirā'a dominates the valley. From here one cannot only see Gadara, but also easily monitor the narrow entrance of the wādī to the west.

The adjacent fertile wādī ensured adequate nourishment, with potentially arable land in the western and central valley, terraced slopes and spurs suited for rainfed agriculture in the east, as well as the wādī slopes that are suitable for grazing small livestock, forming a broad semicircle from the east and south to the west. As a result of his observations, D. Vieweger decided to implement preliminary investigations here from 1998 to 2000.

The 'Gadara Region Project' was launched in 2001 by the Biblical Archaeological Institute Wuppertal (BAI), Germany. In the first season, the surface of Tall Zirā'a was explored⁵, the tall was accurately surveyed, and more than 22,000 pottery sherds and many other finds were systematically collected and analysed. The survey findings helped to formulate the objectives of the excavation program, and to select suitable areas (residential, religious, administrative and craft production) for investigation.

The first excavation season on the tall was in 2003. The team was financed by the 'Society of Friends of the BAI Wuppertal' and travelled by Volkswagen bus from Wuppertal to Amman via Turkey and Syria, under the direction of D. Vieweger. An Ottoman period house inside the Gadara/Umm Qēs archaeological site was used both as living and working quarters; it was in a state of very

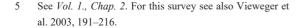


Fig. 0.3 Tall Zirā'a and its geographic location (P. Leiverkus © BAI/GPIA).

poor repair at that time, but has been systematically restored during later seasons, providing modern bathroom and kitchen facilities. The results of the first season on Tall Zirā'a were so promising that the 'Gadara Region Project' was inaugurated, with a planned timeframe of between ten to twenty years.

In 2004, the Biblical Archaeological Institute Wuppertal (BAI) under the directorship of D. Vieweger, and the German Protestant Institute of Archaeology (GPIA) in Amman (which also served as the research unit for the German Archaeological Institute [DAI]), under the directorship of J. Häser, agreed to a close partnership, which ensured ongoing archaeological and interdisciplinary collaboration for the remainder of the archaeological seasons. The German Protestant Institute of Archaeology in Jerusalem (GPIA), run by D. Vieweger since 2005, also joined the work in 2006. The cooperation with the GPIA Amman was confirmed by the new director of the institute, F. Kenkel, from 2013 to 2016, and by K. Schmidt since autumn 2016. During the course of the subsequent 18 seasons, twenty-five strata in three areas have been uncovered, and several scientific processes and archaeological experiments have been carried out; archaeological surface surveys were also completed for the area surrounding Tall Zirā'a, the Wādī al-'Arab, and the Wādī az-Zaḥar.

The slopes of Wādī al-'Arab from Tall Zirā'a upwards to the region of Ṣēdūr and Dōqara, and the region around the Wādī al-'Arab Dam were surveyed in 2009; large parts of this region had not been studied in detail before. In total, 78 locations were documented, 30 of which were previously unknown. The survey was continued until 2012. All in all 327 sites were registered which cover an area from Tall Zirā'a to North Šūna.

All finds were stored at the excavation house in Umm Qēs. Some of the more important finds were exported to the Biblical Archaeological Institute Wuppertal (BAI) and restored by M. Blana; they were returned to the 'Department of Antiquities of Jordan' (DoA) over several stages, with the final delivering to Jordan in the spring of 2015. Furthermore, more than 50 objects discovered during the project are on display in the Jordan Museum in Amman.

Excavation results have been presented as articles in several journals, together with separate publications and dissertations⁶. In addition, the Tall Zirā'a website provides information about current activities on and around the tall in German and English⁷.

After 18 intensive seasons of work researching the tall and its environment, it was decided to interrupt excavation and survey activities in order to publish a complete record of the results thus far. To this end, it was decided that from 2012 until 2020 work would be comprised of study seasons in the excavation house at Umm Qēs, to process data and

6 See e.g. Vieweger et al. 2002a, 12–14; Vieweger et al. 2002b, 157–177; Vieweger et. al. 2003, 191–216; Vieweger et al. 2016, 431–441; Vieweger 2003a, 10; Vieweger 2003b, 459–461; Vieweger 2007, 497–502; Vieweger 2010, 755–768; Vieweger 2013, 231–242; Häser et al. 2016a, 121–137; Häser et al. 2016b, 497–507; Häser – Vieweger 2005, 135–146; Häser – Vieweger 2007, 526–530; Häser – Vieweger 2009, 20–23; Häser – Vieweger 2012a, 693–696; Häser – Vieweger 2012b, 251–268; Häser – Vieweger 2014, 640; Häser – Vieweger 2015, 20–23; Vieweger – Häser 2005, 1–30; Vieweger – Häser 2007a, 1–27; Vie

results gathered to date (for the excavations carried out see the film in *App. 0.1*).

A total of nine volumes are planned on the following topics:

Volume 1: Introduction.

Aims of the 'Gadara Region Project'; Tall Zirā'a and the Wādī al-'Arab; Research History of Tall Zirā'a; the 2001 Tall Zirā'a Survey; Scientific Methods; Framework of Archaeological Work on Tall Zirā'a.

Volume 2: Early and Middle Bronze Age (Strata 25–17)

Volume 3: Late Bronze Age (Strata 16-14)

- Volume 4: Iron Age and Persian Period (Strata 13–9)
- Volume 5: Hellenistic to Umayyad Period (Strata 8–3). Stratigraphy
- Volume 6: Hellenistic to Umayyad Period (Strata 8–3). Ceramic, Glass and Metal Finds
- Volume 7: Abbasid to Ottoman Period (Strata 2–1)
- Volume 8: Wādī al-'Arab Survey
- Volume 9: Archaeometry

All nine volumes will be published online in English, in order to make the results free of charge and accessible to a wide audience. In addition to this, publishing online enables the 3D-images and reconstructions, together with digital films, to be included with the material, which can thus be integrated and used interactively. Furthermore, an online publication will enable the attachment of original data from the excavations, such as plans and database extracts, which would be otherwise impossible.

weger – Häser 2007b, 147–167; Vieweger – Häser 2009, 1–36; Vieweger – Häser 2010, 1–28; Vieweger – Häser 2015; Vieweger – Häser 2017a; Vieweger – Häser 2017b; Kenkel 2012; Kenkel 2013a, 1–24; Kenkel 2013b, 301– 308; Kenkel 2016, 765–781; Kenkel – Vieweger 2014, 12; Schwermer 2014; Gropp 2013; Lehmann – Schulze 2015, 28–30; Schulze et al. 2014, 13; Soennecken – Leiverkus 2014, 14; Soennecken – Leiverkus 2016, 509–518; Soennecken 2017.

7 For an overview of publications see www.tallziraa.de.

5

These additional documents will be published in German and will provide professional researchers with the ability to access the primary data itself, not only as they are interpreted.

General remarks regarding systems and processes used within the publications follow herewith:

- The Israel or Palestine Grid 1923 is the basis for the geographical grid system used for the project. It was first used in autumn 2001 for 5 m x 5 m squares on Tall Zirā'a, and was consequently applied for excavation and survey work alike (see *Vol 1., Chap. 4.1.*).
- Citation styles are based on the directives provided by the German Archaeological Institute (DAI), but have been adapted to the conventions of English language publications.
- In order to minimise misunderstanding, the problem of transliterating Arabic and Hebrew words into English spelling using Latin letters

Bibliography

Abél 1933

F.-M. Abél, Géographie de la Palestine 2, Géographie Politique. Les Villes (Paris 1933)

Achenbach 2014

R. Achenbach, Schöpfungsmythen im antiken Israel, AW 2014, 5, 2014, 33–38

al-Nashef 2009

Kh. al-Nashef, Snake Symbols from Jordan and Palestine (in Arabic), Journal of Epigraphy and Rock Drawings 3, 2009, 31-50 (Arabic Section)

Archimetrix 2005

Archimetrix, Eine virtuelle Zeitreise zum Tell Zera'a – Eisenzeitliches Vierraum-Haus (1200–520 v. Chr.) Palästina, <http://www.bai-wuppertal.de/ node/237> (01.05.2016)

Auge-Vieweger 2006

W. Auge – D. Vieweger, Ein Keramikprojekt zu den Funden vom Tall Zirā'a. Jerusalem. Gemeindebrief – Stiftungsjournal 2006, 3, 2006, 54–56 for local sites and family names is dealt with by using the transcription system of the 'Deutsche Morgenländische Gesellschaft', based on the directives of TAVO (see the Tübinger Bibelatlas).

- For detailed explanations of the chronology of the Southern Levant in the scope of the history of Egypt, Syria and Mesopotamia, see Vieweger 2012, 459–507 (*Vol. 1., Chap. 4.3.*).
- In this report the name of the site is called *Tall Zirā'a*. Other transcriptions are e.g.: *Tell Zer'ah* (MEGA Jordan; Jadis; Kerestes et al. 1977/1978; Glueck 1951a; Glueck 1951b); *Tell Zer'a* (Reicke Rost 1979); *Tell Zara'a*/*Tell Zara'a* (Schumacher 1890 and Steuernagel 1926); *Tell Zira'a* (Hanbury-Tenison 1984).
- All dimensions in the catalogues as well as in the figure captions are given as cm, if not otherwise stated.

Bongartz 2011

G. Bongartz, Entwicklung and Erprobung eines Stereophotogrammetriesystems (MA Thesis Bergische Universität Wuppertal 2011) (unpubl.)

Bongartz 2016

G. Bongartz, 3D Technology for Archaeological Documentation, in: M. Jamhawi (ed.) SHAJ 12 (Amman 2016) 489–495

Bülow - Große Frericks 2009

G. Bülow – J. B. Große Frericks, Die Entwicklung eines CIELAB-basierten Farbklassifizierungsprogramms für archäologische Funde (Project work Bergische Universität Wuppertal 2009) (unpubl.)

Clauß 1907

H. Clauß, Die Städte der El-Amarnabriefe and die Bibel, ZDPV 30, 1907, 1–79

Dijkstra et al. 2005a

J. Dijkstra – M. Dijkstra – D. Vieweger – K. J. H. Vriezen, Regionaal Archaeologisch Onderzoek Na-

bij Umm Qes (Ant. Gadara): De Opgravingen op Tell Zera'a en de Ligging van Laatbrons Gadara, Phoenix 51, 1, 2005, 5-26

Dijkstra et al. 2005b

J. Dijkstra – M. Dijkstra – K. J. H. Vriezen, The Gadara-Region-Project: Preliminary Report of the Sondage on Tall Zar'a (2001-2002) and the Identification of Late Bronze Age Gadara, AAJ 49, 2005, 177-188

Dijkstra et al. 2009

J. Dijkstra - M. Dijkstra - K. Vriezen, Tall Zar'a in Jordan - Report on the Sondage at Tall Zar'a 2001-2002 (Gadara Region Project: Tall Zira'a), BARIntSer 1980 (Oxford 2009)

Fischer 2010

P. M. Fischer, Rezension zu Dijkstra et al. 2009, ZDPV 126, 2, 2010, 168-169

Glueck 1951a

N. Glueck, Explorations in the Eastern Palestine IV. Part I, AASOR 25-28 (New Haven 1951)

Glueck 1951b

N. Glueck, Explorations in the Eastern Palestine IV. Part II, AASOR 25-28 (New Haven 1951)

Goldammer 2019

L. Goldammer, Trade and Cultural Exchange - Late Bronze Age Cypriote Import Ware from Tall Zirā'a, SHAJ 13 (Amman 2019) 447-452.

Gropp 2013

A. Gropp, Die religionsgeschichtliche Entwicklung Nordpalästinas von der Frühen Bronzezeit bis zum Ende der Eisenzeit am Beispiel des Tall Zirā'a (Diss. Bergische Universität Wuppertal 2013), <http://elpub.bib.uni-wuppertal.de/servlets/DocumentServlet?id=3961>(16.3.2016)

Hanbury-Tenison 1984

J. W. Hanbury-Tenison, Exploration du Wādī el-Arab. Chronique archéologique, RB 91, 1984, 230-231

Häser 2019

J. Häser, A Byzantine-Umayyad Monastery and a New Interpretation for the Cistern in Area III on Tall Zirā'a, SHAJ 13 (Amman 2019) 407-412

Häser – Vieweger 2005

J. Häser - D. Vieweger, Preliminary Report on the Archaeological Investigations of the Wadī al-'Arab and Tall Zar'a 2003 and 2004, AAJ 49, 135-146

Häser - Vieweger 2007

J. Häser - D. Vieweger, Gadara Region Project, AJA 111, 3, 2007, 526-530

Häser – Vieweger 2009

J. Häser - D. Vieweger, Auf dem Tall Zira'a in Nordjordanien. 5000 Jahre wechselvolle Geschichte im Spiegel der Ausgrabungen, Im Lande der Bibel 2009, 2, 2009, 20-23

Häser - Vieweger 2012a

J. Häser - D. Vieweger, Tall Zira'a/Wādī al-'Arab, AJA 116, 4, 2012, 693-696

Häser – Vieweger 2012b

J. Häser - D. Vieweger, The Tall Zar'ā and Gadara Regional Project 2009-2011, AAJ 56, 2012, 251-268

Häser - Vieweger 2014

J. Häser - D. Vieweger, Tall Zira'a/Wādī al-'Arab, AJA 118, 4, 2014, 640

Häser – Vieweger 2015

J. Häser – D. Vieweger, Tall Zirā'a Jordanien. Die Kalksteingefäße aus der frührömischen Zeit - Religiöse and sozio-ökonomische Implikationen, e-Forschungsberichte des DAI 2015 Faszikel 2, 20-23

Häser et al. 2016a

J. Häser - K. Soennecken - D. Vieweger, Tall Zira'a in north-west Jordan between Aram and Israel, in: O. Sergi – M. Oeming – I. J. de Hulster (eds.): In Search for Aram and Israel: Politics, Culture and Identity, Orientalische Religionen in der Antike 20 (Tübingen 2016) 121-137

Häser et al. 2016b

J. Häser – K. Soennecken – D. Vieweger, Cylinder Seals from Tall Zira'a as indicators of transparent borders, SHAJ 12 (Amman 2016) 497–507

Kenkel 2012

F. Kenkel, Untersuchungen zur hellenistischen, römischen and byzantinischen Keramik des Tall Zirāʿa im Wādī al-ʿArab (Nordjordanien). Handelsobjekte and Alltagsgegenstände einer ländlichen Siedlung im Einflussgebiet der Dekapolistädte (Diss. Albertus-Magnus-Universität Köln 2012), <kups.ub.uni-koeln.de/4977/> (26.5.2016)

Kenkel 2013a

F. Kenkel, Die ländliche Siedlung Tall Zira'a im Wādī al-'Arab (Nordjordanien) – 1000 Jahre Esskultur, Handel and Religion, in: R. Lebrun – I. Klock-Fontanille (eds.), Res Antiquae 10 (Brüssel 2013) 1–24

Kenkel 2013b

F. Kenkel, The Hellenistic Pottery of the Tall Zira'a in Northern Jordan – Material from a Village in the Spheres of Influence of the Decapolis Cities Gadara, Gerasa and Pella, in: N. Fenn – Ch. Römer-Strehl (eds.), Networks in the Hellenistic World – According to the Pottery in the Eastern Mediterranean and Beyond, BARIntSer 2539 (Oxford 2013) 301–308

Kenkel 2016

F. Kenkel, A Brief Summary of the Ceramic Lamps from Tall Zar'a: Tracing Influences across 'Transparent Borders' from the Hellenistic to Byzantine Periods, SHAJ 12 (Amman 2016) 765–781

Kenkel - Vieweger 2014

F. Kenkel – D. Vieweger, With Trowel and Hightech – German Archaeological Projects in Jordan (Berlin 2014)

Lehmann - Schulze 2015

R. Lehmann – M. Schulze, Tall Zirā'a Jordanien. Archäometrische Forschungen zur Herkunftsbestimmung der Metallfunde im Rahmen des Gadara Region Project, Forschungsberichte des Deutschen Archäologischen Instituts 2015 Faszikel 2, 28–30

Reicke – Rost 1979

B. Reicke – L. Rost, Biblisch-Historisches Handwörterbuch 4. Register and historisch-archäologische Karte Palästinas (Göttingen 1979)

Schulze et al. 2014

M. Schulze – R. Lehmann – C. Vogt, Tall Zirā'a – Archaeometry, in: F. Kenkel – D. Vieweger (eds.), With Trowel and Hightech. German Archaeological Projects in Jordan (Berlin 2014) 13

Schumacher 1886

G. Schumacher, Across the Jordan (London 1886)

Schumacher 1890

G. Schumacher, Northern 'Ajlûn 'Within the Decapolis' (London 1890)

Schwermer 2014

A. Schwermer, Die Kochtopfkeramik des Tall Zirā'a. Eine typologische and funktionale Analyse der Funde von der Frühen Bronze- bis in die späte Eisenzeit (Diss. Bergische Universität Wuppertal 2014),

<http://elpub.bib.uni-wuppertal.de/edoes/dokumente/fba/geschichte/diss2014/schwermer> (19.5.2016)

Soennecken 2017

K. Soennecken, Kulturelle Umbrüche in der südlichen Levante. Der Übergang von der Bronze- zur Eisenzeit unter besonderer Berücksichtigung des Tall Zira'a (Diss. Bergische Universität Wuppertal 2017),

<http://elpub.bib.uni-wuppertal.de/servlets/DokumentServlet?id=7401 (30.1.2018)

Soennecken 2019

K. Soennecken, Between Collapse and Continuity. Late Bronze Age to Iron Age transition on Tall Zirā'a, SHAJ 13 (Amman 2019) 413–420

Soennecken - Leiverkus 2014

K. Soennecken – P. Leiverkus, Survey in the Wādī al-'Arab 2009–2011, in: F. Kenkel – D. Vieweger (eds.), With Trowel and Hightech. German Archaeological Projects in Jordan (Berlin 2014) 14 Soennecken - Leiverkus 2016

K. Soennecken - P. Leiverkus: Survey in the Wādī al-Arab 2009-2001, SHAJ 12 (Amman 2016) 509-518

Steuernagel 1926

C. Steuernagel, Der 'Adschlūn, ZDPV 49, 1926, 1 - 162

Vieweger 2003a

D. Vieweger, Tall Zar'a/Gadara Region August 30-September 26, 2003, Munjazāt 4, 2003, 10

Vieweger 2003b

D. Vieweger, The Tell Zera'a, AJA 107, 3, 2003, 459-461

Vieweger 2007

D. Vieweger, The 'Gadara Region Project'. Archaeological and Archaeometric Investigations, SHAJ 9 (Amman 2007) 497-502

Vieweger 2010

D. Vieweger, Archaeological Research on Tall Zirā'a - The Gadara Region Project. 5000 Years of Culture, Technology, and Trade in Northern Jordan, in: P. Matthiae - F. Pinnock - L. Nigro - N. Marchetti (eds.), Proceedings of the 6th International Congress on the Archaeology of the Ancient Near East Roma 5th-10th May 2008 II, Excavations, Surveys and Restorations: Reports on Recent Field Archaeology in the Near East (Wiesbaden 2010) 755-768

Vieweger 2012

D. Vieweger, Archäologie der biblischen Welt (Gütersloh 2012)

Vieweger 2013

D. Vieweger, The Transition from Bronze to Iron Ages in Northern Palestine. Archaeological and Archaeometric Investigations at Tall Zar'a, SHAJ 11 (Amman 2013) 231-242

Vieweger 2019

D. Vieweger, Sites after Excavation. National Parks and Public Education, SHAJ 13 (Amman 2019) 213-222

Vieweger - Häser 2005

D. Vieweger - J. Häser, Der Tell Zerā'a im Wādī el-'Arab. Das 'Gadara Region Project' in den Jahren 2001 bis 2004, ZDPV 121, 1, 2005, 1-30

Vieweger – Häser 2007a

D. Vieweger - J. Häser, Das 'Gadara-Region Project'. Der Tell Zerā'a in den Jahren 2005 and 2006, ZDPV 123, 1, 2007, 1-27

Vieweger – Häser 2007b

D. Vieweger - J. Häser, Tall Zira'a. Five Thousand Years of Palestinian History on a Single-Settlement Mound, NEA 70, 3, 2007, 147-167

Vieweger – Häser 2009

D. Vieweger - J. Häser, Das 'Gadara-Region Project' and der Tall Zirā'a. Fünf Jahrtausende Geschichte Palästinas - eine Zwischenbilanz nach fünf Grabungskampagnen, Das Altertum 54, 1, 2009, 1 - 36

Vieweger – Häser 2010

D. Vieweger - J. Häser, Das 'Gadara-Region Project'. Der Tell Zerā'a in den Jahren 2007 bis 2009, ZDPV 126, 1, 2010, 1-28

Vieweger – Häser 2015

D. Vieweger – J. Häser with contribution by S. Schütz, Tall Zirā'a. Five Thousand Years of History in One Settlement Mound (Jerusalem 2015)

Vieweger – Häser 2017a

D. Vieweger – J. Häser (eds.), Tall Zirā'a. The Gadara Region Project (2001-2011), Final Report, Volume 1: Introduction (Jerusalem/Amman/Wuppertal 2017) (Online Publication)

Vieweger – Häser 2017b

D. Vieweger - J. Häser (eds.), Tall Zirā'a. The Gadara Region Project (2001-2011), Final Report, Volume 1: Introduction (Gütersloh 2017)

Vieweger et al. 2002a

D. Vieweger with contributions by J. Eichner – P. Leiverkus, Tall Zera'a in the Wādī al-'Arab, OccOr 7, 2, 2002, 12-14

Vieweger et al. 2002b

D. Vieweger, with contributions by J. Eichner – P. Leiverkus, Tall Zar'a in the Wādī al-'Arab: The 'Gadara-Region-Project', AAJ 46, 2002, 157–177

Vieweger et al. 2003

D. Vieweger with contributions by J. Eichner – P. Leiverkus, Der Tell Zera'a im Wādī el-'Arab. Die Region südlich von Gadara. Ein Beitrag zur Methodik des Tell-Surveys, Das Altertum 48, 2003, 191–216

Vieweger et al. 2016

D. Vieweger – K. Soennecken – J. Häser, Accidents in Ancient Times. A Landslide at Tall Zirā'a. Reasons and Consequences, SHAJ 12 (Amman 2016) 431–441

INTRODUCTION AND ACKNOWLEDGMENTS

by Katja Soennecken/Patrick Leiverkus

Fig. 0.4 The Wādī al-'Arab.

To really understand a site, knowledge of its surroundings is essential. How was the site connected to its vicinity? What was its position? Which settlements surrounded the place? How did trade routes run? Who were the neighbours? To get closer to the answers to these questions, we conducted a survey of the surrounding area of the Tall Zirā'a. The first results and an extensive collection of material are presented in the now available volumes 8.1 and 8.2.

Volume 8.1 is divided into two large chapters: The Wādī al-'Arab Survey and related research projects in the Wādī al-'Arab. The first chapter provides an overview of previous surveys in the region, methodology and objectives of our survey and the individual campaigns. *Chap. 1.5.* offers a rough description of the sites through the ages and *Chap. 1.6.* presents special finds (pottery by Katja Soennecken, lithics by Benjamin Schröder, stone vessels by Katja Soennecken, glass by Stefanie Hoss). Unfortunately, we also have to write a chapter about the observed destruction in the examined area.

All this does not represent a final evaluation, but rather presents highlights that require further in-depth research. *Chap. 2.* is dedicated to landscape archaeology and geobotany (Linda Olsvig-Whittaker), archaeobotany (Avi Shmida, Linda Olsvig-Whittaker, Katja Soennecken) as well as geology (Sabine Kraushaar et al.).

In volume 8.2 the catalogue of the sites is presented.

The authors would like to extend their heartfelt thanks to Prof. Dr. Dr. Dr. h. c. Dieter Vieweger and Dr. Jutta Häser for enabling them to conduct this survey and also for their support in the process. Likewise, the authors wish to thank the Volkswagen Foundation, whose financial support made this publication possible. This kind of venture is not possible for a single person, but requires a strong team.

This team consisted of the following persons (in alphabetical order):

Kim Adam; Antje Cassel (release of the find photos); Dr. Jutta Häser (small finds); Dr. Stefanie Hoss (glass); Dr. Frauke Kenkel (pottery); Dr. Sabine Kraushaar (geology); Anke Laderick; Patrick Leiverkus (director/technical support/database); Dr. Linda Olsvig-Whittaker (landscape archaeology and archaeobotany); Alina Quentmeier (photography in the field); Benjamin Schröder (flint); Anne Schürmann; Dr. Andrea Schwermer (pottery); Dr. Avi Shmida (archaeobotany); Dr. Katja Soennecken (director/documentation).

We would like to take this opportunity to thank them all!

The realization of a survey in a previously surveyed area is—in retrospect—a surprisingly rewarding task, even if it is less of a pioneering endeavour. It is more about maintaining the records, filling the gaps, recording the losses, trying to clear up the picture by using most recent knowledge and modern techniques. So we like to look upon this survey not just as an individual venture but rather as part of an ongoing long-term survey. We stood on the strong shoulders of our elders like Nelson Glueck and Siegfried Mittmann. The work has to continue with refined knowledge and better techniques-by us and hopefully by many others to come. In this volume we present all sites and finds. A detailed analysis, i.e. a settlement archaeological investigation also making use of current methods of geostatistics and testing their applicability for archaeological research, is planned.

Fig. 0.5 Survey team walking along the Wādī al-'Arab.

1. The Wādī al-'Arab Survey

by Katja Soennecken/Patrick Leiverkus

1.1. Introduction

During the summers of 2009 to 2011 a survey was conductes in the Wādī al-'Arab and its vicinity by the Biblical-Archaeological Institute Wuppertal and the German Protestant Institute of Archaeology. This survey is an integral part of the "Gadara Region Project". It was planned to be a hinterland survey for the Tall Zirā'a excavation. The aim was to get a thorough understanding of the landscape in which Tall Zirā'a is the most prominent archaeological site. At the very heart of such an exploration are the questions of settlement pattern, distribution, relation and relative importance through time. Furthermore, Wādī al-'Arab is one of the easily passable ascents from the Jordan valley to the Irbid-Ramtha-basin and so has been part of trade routes from the Mediterranean coast to Damascus, Mesopotamia, or Amman. Questions of the actual trade routes crossing this area and their shifting importance throughout time arise. This survey is focused on evidence that could help answer these questions. It is clear that the information of the sites in the wādī and its vicinity has to be as detailed and up to date as possible.

This volume merely presents the find material; an investigation of the settlement archaeology with a detailed evaluation is forthcoming. The area under inspection comprises the catchment area of the Wādī al-'Arab except for the wider area of the modern city of Irbid.

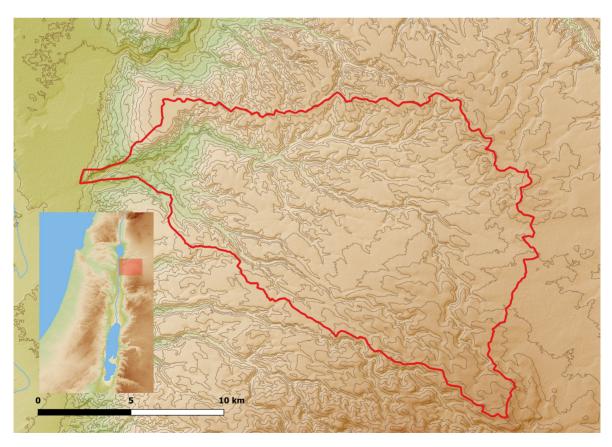


Fig. 1.1 The survey area (P. Leiverkus © BAI/GPIA).

1.2. Previous Surveys in the Area

Wādī al-'Arab had already been the object of several previous surveys, starting with G. Schumacher's in 1889¹. Not all of the archaeological surveys in the region explored the Wādī al-'Arab as a whole. Some of the researchers focussed on sub-regions, like C. Lenzen and A. McQuitty², who investigated the area around Bēt Rās, or L. El-Khouri³, who studied the region west of Irbid. Others, like S. Mittmann, conducted their survey on a much larger geographical scale and thus confined their research in the Wādī al-'Arab to its more prominent archaeological sites. In the following text, only those studies will be outlined that proved to be of particular relevance to the current Wādī al-'Arab survey.

1.2.1. N. Glueck-1932-1947

In the course of the 1930s and 1940s, N. Glueck⁴ documented more than a thousand archaeological sites across the entire territory of Transjordan. During World War II he was employed by the American Forces in Transjordan and was able to continue his work as an archaeological surveyor. In this pe-

riod of time, he listed more than 200 settlements in the north of the country. In the investigation area of the Wādī al-'Arab, 42 locations were registered, 34 of which were revisited and documented in the course of this survey.

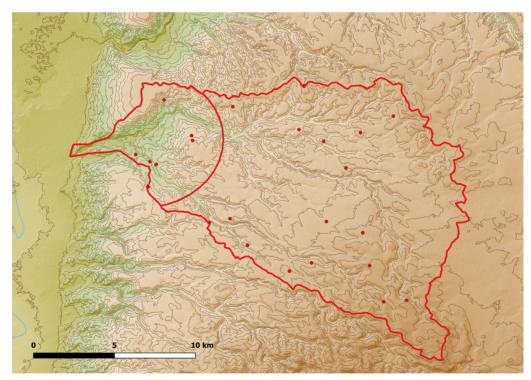


Fig. 1.2 Sites documented by N. Glueck (P. Leiverkus © BAI/GPIA).

- 1 Schumacher 1893.
- For example Lenzen McQuitty 1983; Lenzen McQuitty 1985; Lenzen – McQuitty 1988.
- 3 El-Khouri 2007a.
- 4 Glueck 1939; Glueck 1942; Glueck 1951.

1.2.2. S. Mittmann-1963-1966

On behalf of the German Protestant Institute of Archaeology, S. Mittmann⁵ conducted a survey in northern Transjordan from August 1963 until January 1966. In doing so, Mittmann focussed on the regions not included in Glueck's documenta-

tion and explored an area that reached as far as the Wādī Ǧaraš. For the investigation area of the Wādī al-'Arab, 43 locations were listed, 33 of which were revisited and documented in the course of this survey.

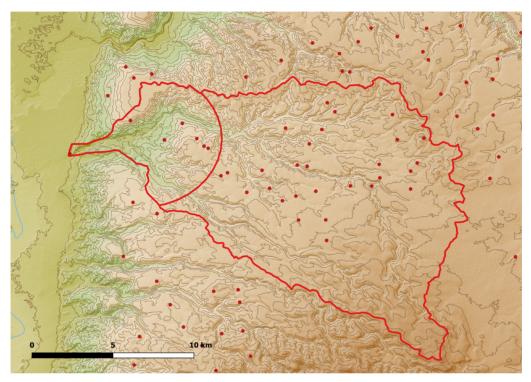


Fig. 1.3 Sites documented by S. Mittmann (P. Leiverkus © BAI/GPIA).

1.2.3. J. W. Hanbury-Tenison-19836

In September 1983, three survey areas were explored in the course of 18 days: a) to the west, 11 km² across the entire mouth of the wādī, b) central, 8 km² in the area of the ridge near Umm Qēs (Gadara), and c) to the east, 6 km² in the area of the modern village of Som. A total of 25 km² were covered and 102 archaeologically relevant sites were documented. The survey was limited to representative areas in order to demonstrate the total potential of the wādī. The area of the Bēt Rās survey was excluded, as was the Jordan Valley. As the survey's objective was getting a general overview, no detailed pictures or descriptions of the sites were provided even though pieces of pottery were collected (all of them at smaller locations while only a choice selection was deliberately assembled at larger sites).

For the investigation area of the Wadī al-'Arab, 93 archaeologically relevant sites were listed, 13 of which were revisited and documented in the course of this survey. Unfortunately, the substantial discrepancy between the numbers of locations named and those revisited is largely due to destructions and particularly to the new construction of terraces for olive tree plantations during the past 20 years for which many of the archaeological sites were sacrificed. However, the very sparse site descriptions by J.-W. Hanbury-Tenison were not very conducive to relocating them, either.

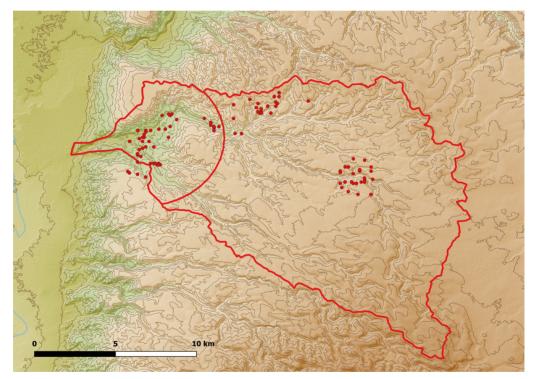


Fig. 1.4 Sites documented by J. W. Hanbury-Tenison (P. Leiverkus © BAI/GPIA).

1.2.4. L. El-Khouri-2005

The "West Irbid Survey" was conducted by L. El-Khouri and her team in September 2005 in an area of 71 km² located west of Irbid. This survey had three objectives: first, registering the larger archaeological settlements, including dolmens, and understanding their connection with the nearby chalcolithic and Bronze Age settlements. Second, the researchers wanted to better understand the rural nature of the Classical period settlements and their social and economic context. Finally, a comprehensive documentation (description, photography, collection of artefacts, and GIS-mapping of the area) of the settlements during the different eras was undertaken⁷.

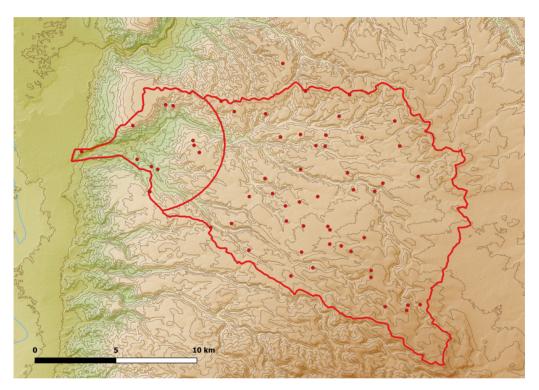


Fig. 1.5 Sites documented by L. El-Khouri (P. Leiverkus © BAI/GPIA).

1.2.5. T. Kerestes, J. Lundquist, B. Wood, K. Yassine-1978

For the purpose of securing archaeological information prior to the planned construction of several reservoir dams in northern Jordan, a survey was conducted in 1978⁸. In the process, three sites were documented in the area of the $W\bar{a}d\bar{i}$ al-'Arab.

1.3. Methodology and Aims of the New Wādī al-'Arab Survey

In this chapter, the targets of the Wādī al-'Arab survey from 2009 to 2011, and the methodology applied, will be expounded. In spite of the fact that the region as a whole had already been subject to several explorations and all related publications were and still are valuable and constitute abundant sources of information, neither of them provided the completeness and level of detail necessary for the purpose of the "Gadara Region Project".

Glueck and Mittmann had a much broader area in view and could therefore only cover the major sites of the area of interest. J. W. Hanbury-Tenison's survey, due to its level of detail, is restricted to only three areas and does not cover the entire Wādī al-'Arab. Furthermore, as this survey is now one generation old, a fresh look on all the given data seems appropriate, considering the much more elaborate stratigraphy and typology of the region today due to the continuing efforts of the "Gadara Region Project" and other projects.

Given the knowledge acquired during the previous surveys and with the target of a hinterland survey in mind, the approach chosen was two-fold: On the one hand revisiting the known sites, and complementing and enhancing the information about them, and on the other hand filling the gaps by surveying the areas that had not been surveyed before. During the three seasons in question, the hinterland of the Tall Zirā'a was examined completely—the area of investigation was divided into the zones A and B. Zone A is the area in the vicinity of Tall Zirā'a, and Zone B comprises a broader range that reaches as far as Irbid. We tried to cover Zone A completely and without a gap, whereas in Zone B we concentrated on the known or larger sites.

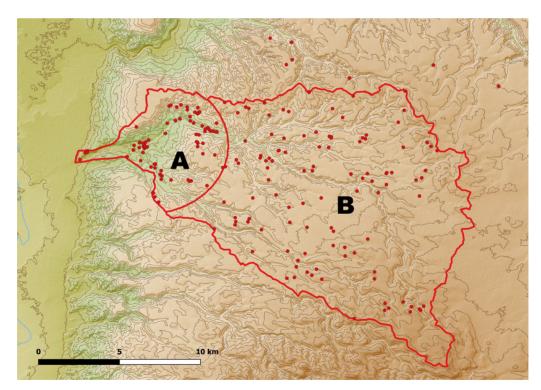


Fig. 1.6 Zones A and B with documented sites (P. Leiverkus © BAI/GPIA).

Within the boundaries of Zone A, the area was inspected on foot, the participants spreading out at a distance of 10 m from each other. If a (new) site was discovered, this distance was reduced to 5 m on large sites, and to arm's length on smaller ones. The exact location of each site was identified by GPS. In addition, the area or expanse of a site was documented, as were its topographical position and its exact properties and condition.

Single contexts inside one site were measured and described individually. These contexts were mostly tombs, cisterns, or agricultural installations—but also larger single finds that were not removed from the site, such as hewn ashlars, millstones, or sarcophagi. Smaller single finds (grinding stones, flints, pieces of pottery, or glass) were collected. If the site was already known, only randomized pieces of pottery were taken in order to compare them to the specifications found in the literature. Place descriptions were updated.

An overview photo was taken from each site, and every context was also photographed. All information gathered was entered into a database. In addition, bibliographical references and possible divergences of coordinates were recorded in this database.

• • •					Wac	di al-Arab (ba	i)			ŧ
	1 O 328 Gesi	amt (Unsortiert)			Q	✓ ↓ ^a _z	<u>⊥</u> ~		Q~ Tall Kak	8
	Datensätze	Alle zeige	n Neuer Datensa	tz Datensatz lösche	n Sucl	hen Sortierer	n Bereitstellen			
Layout: Fundplact	tze v Ar	nzeige: 🗖 🗮 🖩 🛛 Seit	enansicht						, A	Layout bearbeiten
Arial	O) (Stand	lard 0) (16	pt 🗘 🗾 🔟 🛛 B		=					
Startseite	Fundplätze Be	funde Fundzettel	Funde Punkte	Tagebuch					Fundplat	z 212/223-1
204/222-1	Allgemein	Befunde Fundzettel	Funde Literatur	Google Maps	Fundplatzblatt	t Bilder	Kartierung		Datierung	Literaturdatierung
206/221-1	Kurzbez	eichnung 212/223-1	Fundplatz Tall K	k		Beart	peiter/in KS	Datum 28.07.2009	Neolith Chalkoliti	Neolith Chalkolith
207/222-1		PG Ost 212715	PG Nord 122333		Manual	linatenherkunft		Bemerkung	X FB	FB
207/223-1								bemerkung	MB X SB	MB SB
207/224-1	W	GS84 Ost 35.6651423	WGS84 Nord 32.6035	/24	GPSPI	unkt gemessen	28.07.2009 08:53		X EZ-I	EZ-I
207/224-2		Punktbezeichnung	PG Ost PG No	rd Höhe	Gemessen	(Gerätenotiz		X EZ-IIA/B	EZ-IIA/B
208/224-1		<u>></u>	212715 1223	337 93	28.07.2009	08:53)^		X Hell	Hell
208/224-2		▲ > (TK1	212566 1223	179 76	28.07.2009	9 09:23]		X F-Röm X S-Röm	F-Röm
208/224-3		▲ > TK10	212720 1223	343 89	28.07.2009	9 10:34			🔀 Byz	Byz
209/228-1		▲ > (TK11	212736 1223	298 93	28.07.2009	9 11:41)		X Oma X Avv/Mam	Oma Ayy/Maml
210/222-1		► TK12	212642 1223	363 63	29.07.2009	9 08:02]		X Osman	Osman
210/224-1		∧ > TK13	212628 1223	380 57	29.07.2009	9 08:03				
210/225-1		▲ > TK14	212525 1223	284 25	29.07.2009	9 09:35			Kartierung	
210/230-1		^ > TK2	212542 1223	243 69	28.07.2009	9 09:29			Lith X FB	
211/222-1			212613 1223	68 68	28.07.2000		<u> </u>		X MB/SB	
211/222-2	Lage	Nordnordöstlich oberhalb de 500 m nordöstlich der Schn				Zustand	Im NO-Bereich Olivenplantage Ackerfläche.	nit dichtem Bodenbewuchs, der SW-Bereich ist	K EZ K hell/f-röi	n
211/223-1		Direkt an der Straße, die die Wadi Arab-Brücke	e Schnellstraße und Tall Z	raa verbindet, 1 km	nördlich der		Auf dem höchsten Punkt relativ m, H. 1,56 m).	zentral ein Wasserspeicher (L. 1,86 m, Br. 1,56	× s-röm/by	
211/223-2		2 km südöstlich des Tall Zira 3 km westlich von Kufr Assa					Im SW befindet sich ein niedrig landwirtschaftlich genutzt wird.	er gelegenes Plateau (Unterstadt?), das ebenfalls	X isl	
211/224-1		S KIN WESHEN VON KUN ASSE				~	anom contractingendize with.		🤟 🗌 galilean	
211/224-2	Beschreibung	Es handelt sich um einen Te	ell mit mehreren Besiedlu	gsphasen und einer	Fläche von	Arbeiten		unkt der Ausdehnung der Unterstadt	oil lamps	
211/224-3		ca. 1,5 ha. Dem Tell südwestlich vorge						ter Punkt der Ausdehnung der Unterstadt r Punkt der Ausdehnung der Unterstadt		
211/224-4		Halbkreisen (Unterstadt, Be Auch westlich des Tell befin						ter Punkt der Ausdehnung der Unterstadt ang/ Ende der Straße		
211/224-5		Olivenplantage, die südliche Im NO-Bereich des Tell befi	Fläche als Acker genutzt	wird.			TK7: östlichste	r Punkt des Tell ter Punkt des Tell		
211/224-6		-1-006: Siehe BefBlatt -00 Der NO-Bereich des Tell wir	6), die eventuell als Raub	gräbergruben anzusp	rechen sind.			ter Punkt des Tell		
211/224-7		Seite mit unbearbeiteten Fe	dsteinen abgestützten W	eg (Bef. 211/223-1-0			TK11: Gruben			
211/225-1		nach NW mit der darunter g Im SW fällt der Tell steil zur	m Wadi Zahar, im O steil :	ur Straße ab.			TK12: 212/22 TK13: 212/22	8-1-008		
211/225-10		NO- und S-Hang sind mit so Von NW führt eine Zufahrt	auf den Tell.				TK14: Quelle i Acht Befunde: 212/223-1-001:	Unterstadt		
211/225-11		Am Fuß des W-Hangs befin	det sich ein weiteres Plate	au mit einer Fläche	ca. 1 ha (Bef.	~	212/223-1-0	02: Weg zur Unterstadt	GE KN	1L

Fig. 1.7 Excerpt from the database.

The typological differentiation of the ceramics and their attribution to different ware groups were made in keeping with the categories and classifications devised for the Tall Zirā'a. The flint finds and the glass finds were typologized accordingly. Identification of the individual pieces of pottery was carried out by Dr. Andrea Schwermer⁹

- 9 For a detailed typology of cooking pots, cf. Schwermer 2014.
- 10 For a detailed typology of classical ceramics on the Tall Zirāʿa, cf. Kenkel 2012; Kenkel 2020.

(pre-classical eras) and Dr. Frauke Kenkel¹⁰ (classical eras). The flint finds were categorized by Benjamin Schröder¹¹, and the glass finds by Dr. Stefanie Hoss¹². Dr. Jutta Häser made all the drawings of the small finds, and Antje Cassel helped to provide all the find photographs. Our most sincere thanks go to all of them.

- 11 For a detailed typology of flints, cf. Schröder (forthcoming).
- 12 For a detailed typology of glass finds, cf. Hoss (*Chap. 1.6.3.* in this volume) and Hoss 2020.

Combined with the knowledge of the previous surveys, we are now able to map 327 sites and installations. Each of the sites was dated and categorized based on its ceramics and/or its architecture. The categories are: settlement, single complex, installation, cistern, tomb, cave, and sherd find. For definitions of the individual categories, please confer *Chap. 1.5.3.* It is of course important to keep in mind that the numbers cannot be regarded as absolute since naturally younger sites can be more easily found whereas more ancient ones bear a higher likelihood of being buried. We must therefore assume that the absolute number of prehistoric and early settlements was much larger.

1.4. Seasons

1.4.1. 2009 Season

The first season took place from 28 July to 13 August 2009 with the following participants: Kim Adam, Antje Cassel, Anke Laderick, Patrick Leiverkus, Anne Schürmann, Andrea Schwermer, Benjamin Schröder, Katja Soennecken, Alina Quentmeier—supported on some days by the participants of the training course, Eva Fricke and Peter Voss, and the GPIA trainee, Felix Demandt.

Fig. 1.8 Participants mapping an Ottoman mill.

During the first campaign, 71 sites were recorded, 30 of them not previously published/known. More than 80 percent of the sites date from the classical periods. The other sites were inhabited during the Bronze Age, the Iron Age or different Islamic periods. Lithic sites could not be discovered. The large talls, Tall Qāq (Hirbat Bond) and Tall Ra'ān (Tall Kinīse), were revisited. The area around the Wādī al-'Arab Dam, which was in part surveyed by T. Kerestes in 1978 and by J.-W. Hanbury-Tenison in 1983, was covered as well. Furthermore, the slopes of the Wādī al-'Arab from Tall Zirā'a upwards to the region of Ṣēdūr and Dōqara were surveyed. The larger part of this area had not been surveyed in detail before. While Ṣēdūr and Dōqara themselves were mentioned by S. Mittmann the surroundings revealed many sites that shed new light on the settlements' agricultural subsistence.

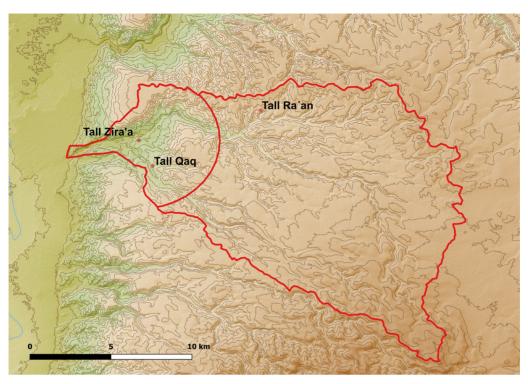


Fig. 1.9 The three large talls within the survey area (P. Leiverkus © BAI/GPIA).

The northern slopes of the wādī directly upwards from Tall Zirā'a are characterized by a dense occurrence of water sources. Many of the sites found there relate to them. This can shed further light on the Roman water management in the region. One smaller site on the other side of the wādī, directly across from the Tall Zirā'a, is particularly worth mentioning. This site was first published by T. Kerestes in 1978 (Site 2 in the Wādī al-'Arab; 211/225-8) and dated to the Middle Bronze Age.

Fig. 1.10 Sites 211/225-7 and 211/225-8 in relation to Tall Zirā'a and Gadara.

Its position puts this site in direct relation to Tall Zirā'a. Together they control a narrow passage in the wādī and of course there is an unimpeded line of sight between this site and the tall. Just 50 m up the slope of the spur another previously unknown/ unpublished site could be recorded with architectu-

ral remains of the Roman period (211/225-7). This site does not only overlook the lower wādī, as does the nearby older site, but it also has a direct line of sight to Gadara, which is lacking in the lower position. This hints at the shift of centrality from Tall Zirā'a to Gadara during the Roman period.

Fig. 1.11 Sites 211/225-7 (Roman-Byzantine) and 211/225-8 (Bronze Age).

Further along the Wādī al-'Arab, upwards from the Tall Zirā'a, five penstock mills were recorded along with two dams. J.-W. Hanbury-Tenison only men-

tions three mills. All of them can be dated to the Ottoman period.

1.4.2. 2010 Season

The second campaign took place from 19 July to 7 August 2010 with the following participants: Sabine Kraushaar, Patrick Leiverkus, Katja Soennecken, Anne Schürmann, and Alina Quentmeier supported on some days by the teaching course participants Oliver Gussmann and Ursula Rudnick, and Marie Schulze.

During the 2010 season, 74 sites were recorded. While during the first season in 2009, the lower part of the Wādī al-'Arab from North Šūna up to Dōqara was surveyed, in this season the survey covered the area from Dōqara up to the vicinity of Irbid. The nature of the landscape changes while approaching the upper part of the Wādī al-'Arab. The wādī is cut deeper and the settlements can mostly be found at the edges high above it. Most of the ancient settlements were known even before the surveys of N. Glueck and S. Mittmann were conducted.

The 2010 season was also special in that our team was accompanied by Sabine Kraushaar from the Helmholtz Centre for Environmental Research. Apart from some "communication problems" at the beginning (we learnt that archaeologists and geologists look at the landscape in completely different ways, and whenever the geologist got excited about something, the archaeologists had no idea why this should be worth looking at, and *vice versa*), it did not take long to discover how useful working together can be. The results of this cooperation are presented by Sabine Kraushaar in *Chap. 3.3.*

We would like to extend our warmest thanks to all our fellow campaigners during the years of 2009 and 2010.

Fig. 1.12 S. Kraushaar during the campaign in 2010.

1.4.3. 2011 Season

This year, the close inspection of the hinterland of the Tall Zirā'a (Zone A) was complemented by a broad look at the Wādī al-'Arab region by revisiting the major sites in the entire area (Zone B). The exact location of each site was measured by GPS, pottery was collected for comparison, and descriptions were updated to the current state of the sites.

During this season, 68 sites were recorded. This time, the team comprised only Patrick Leiverkus and Katja Soennecken.

Fig. 1.13 K. Soennecken.

Fig. 1.14 P. Leiverkus.

1.4.4. 2012 and 2014 Seasons

In 2012 and 2014, the summer campaigns of the "Gadara Region Project" were used for reviewing and verifying individual sites. Thus, eight new sites were recorded in 2012 and three further ones

in 2014. Apart from that, a photographic documentation of all finds was conducted and the sites were typologized.

1.5. Sites

1.5.1. General Remarks

There are two types of sites: those whose location has been ascertained by GPS (number: 224), and those whose coordinates have been taken from the literature (number: 103). Due to the sparseness of information or because they have been completely overbuilt in the meantime, most of the latter ones could not be rediscovered.

Our own GPS measurements were conducted with the handheld devices by the companies Garmin and Magellan. The coordinates are indicated in the Palestine Grid¹³, which is the commonly used coordinate system for archaeology in this region. It is a Cassini-Soldner projection with metrical unit lengths and was established by the British mandate administration in 1922. The central meridian passes through the Mar Elias Monastery near Jerusalem. The 100,000/100,000 point was placed on the Ali el-Muntar hill overlooking Gaza. Metre-perfect specifications are given with six digits per coordinate. Thus, if three digits per coordinate are given, a kilometre grid is obtained. The place names in this publication are indicated in this grid.

1.5.2. Zones

A total of 100 sites were newly recorded, which had all neither been documented nor mentioned in any of the previous surveys. Of course, the possibility cannot be ruled out that some of them may coincide with sites of the Hanbury-Tenison Survey, but given the inaccuracy of coordinates and lack of descriptions, we decided against an identification in cases of doubt. The area under inspection can be subdivided into three zones: the area covering a radius of 500 m around the Tall Zirā'a, the immediate hinterland of the Tall Zirā'a (Zone A), and the catchment area/ watershed of the Wādī al-'Arab as a whole (Zone B). These were included with a decreasing claim to being exhaustive.

Also called "Israel Grid" or, nowadays, "Old Israel Grid" in Israel.

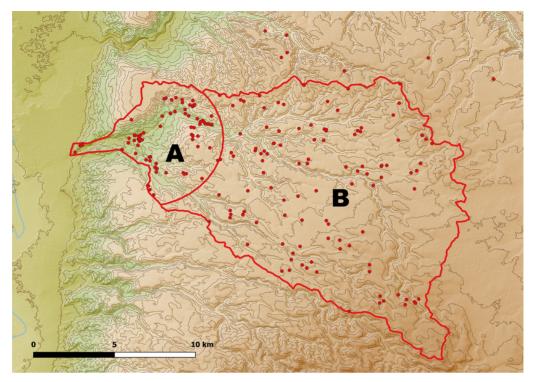


Fig. 1.15 Sites newly recorded during the Wādī al-'Arab survey (P. Leiverkus © BAI/GPIA).

1.5.2.1. Tall Zirā'a

There are 25 sites within a radius of 500 m around the Tall Zirā'a; 20 of these were newly documented while five had been previously known from the literature—none of them to the east of the tall. All of these sites seem to be related to the tall: two low-er towns are located to the northwest and to the west, while a little farther to the south-west there are tombs, and the entire area to the south-west seems to have been used for agricultural purposes. On the other side of the wādī there are several sites, in all likelihood sentinels' shelters—some from prehistoric times located at the wādī's mouth and directly related to the tall, and two more from the classical era that are related to Gadara.

1.5.2.2. Zone A

Zone A of the area under inspection delineates a distance buffer with a maximum distance of 5 km from the Tall Zirā'a. It extends over 43 km² and comprises 89 sites. It was attempted to document this area in its entirety.

1.5.2.3. Zone B

The second zone inside the area under inspection is termed Zone B and covers an area of 222 km², comprising 108 sites. Taken together, the two zones extend over 265 km². The total number of sites is 197—complemented by nine sites that are located outside the boundaries of the actual survey area.

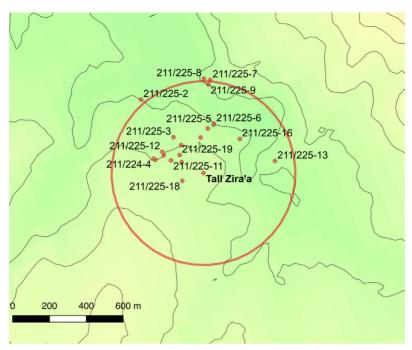


Fig. 1.16 Sites in a 500 m radius around Tall Zirā'a (P. Leiverkus © BAI/GPIA).

1.5.3. Outline of the Settlement Types Characteristic of the Different Periods

The applied chronology follows Vieweger¹⁴ and, regarding the Hellenistic to Byzantine periods, Kenkel¹⁵. The majority of sites were chronologically classified on the basis of their ceramic evidence or their architecture and processing traces in the natural rock. This resulted in a broad division into Paleolithic/Chalcolithic period (although the question remains open whether the dolmens must be in fact dated to this period or rather to the Early Bronze Age), Bronze Age (Early, Middle, and Late Bronze Age), Iron Age (Iron Ages I, IIA, IIB, IIC), Hellenistic-Roman period, Late Roman-Byzantine period, and Islamic period (Umayyad to Ottoman). However, the limitations of such a division are soon apparent as many of the pottery forms and wares were continuously in use from the Bronze into the Iron Age and also from the Byzantine into the Umayyad period, and the material remains give no evidence of any disruption. While knowing about these inaccuracies, nevertheless this division has been adhered to as it allowed to give a broad outline of the settlement development. Based on the archaeological findings, it was impossible to distinguish the period of the Abbasids and Fatimids from the Umayyad and the Ayyubid-Mamluk periods, respectively.

 ¹⁴ Vieweger 2012, 44. 468–488. Specified: Tall Zirā'a Vol. 1, 15 Kenkel 2012, 276. 315.
 243.

Period	Chronology
Paleolithic- Chalcolithic	Before 3600 BC
Bronze Age	3600-1200/1150 BC
Early Bronze Age	3600–1950 BC
Middle Bronze Age	1950–1550 BC
Late Bronze Age	1550–1200/1150 BC
Iron Age	1200/1150-332 BC
Iron Age I	1200/1150–980 BC or 1200/1190 –930/20 BC
Iron Age II	980–520 BC or 930/20–520 BC
Persian (Iron Age III)	520–332 BC
Hellenistic-Early Roman	332 BC-135 AD
Hellenistic	332–63 BC
Early Roman	63 BC-135 AD
Late Roman-Byzantine	135–636 AD
Late Roman	135–324 AD
Byzantine	324–636 AD
Islamic	636–1918 AD
Early Islamic – Umayyad	636–750 AD
(Abbasid-Fatimid)	(750–1171 AD)
Ayyubid-Mamluk	1171–1515 AD
Ottoman	1515–1918 AD

Tab. 1.1 Chronology of periods in the survey area.

The individual sites were not only chronologically classified but also typologized or categorized: "Settlement" denotes an assemblage of buildings or the settling on a larger area, often over the course of several historical eras. This often applies to a tall or a hirba in the area. By contrast, "single complex" denotes a detached building or an individual complex consisting of several buildings (a watch tower, a villa, a homestead, a hamlet). "Installations" usually comprise agricultural installations such as mills or presses, but also those whose function is unclear, most of them hewn into the natural rock (basins, chutes). "Cisterns" and "tombs" require no further definition. "Caves" can either be of natural origin and may have been used as shelters or cattle sheds, or they can be tombs—in this case, the site is attributed to both categories. "Sherd scatter" or "lithic scatter" denotes a site where only ceramic sherds or flint flakes and tools were found, lacking any discernible architectural context or any other related installation. Depending on varying applications over the course of time, some sites belong to different categories.

Regarding the category "sherd scatter" it should be noted that sites with only a few washed-out Roman-Byzantine sherds (like, e.g., 224/228-1 or 225/223-1) are often located in an agricultural area (olive trees or agricultural crop land) and it is doubtful whether these pieces of pottery were originally left behind at this exact place or whether it is not more likely that they were transported there along with the fertile soil from a different location (for instance, the Gadara plateau).

The subsequent tabular overview comprises not only the sites that were newly documented in the course of this survey but also those that were only evidenced by the literary sources. If one of the latter sites was revisited during the "Gadara Region Project" and a representative number of ceramics has been collected, the project's own chronological classification is used in cases of discrepancy to the data in the literature. "Lithic scatter" is classed with the Paleolithic-Chalcolithic sherd scatters. It has to be pointed out that, due to the lack of ceramics, an installation or a looted tomb could often not be dated precisely and thus appears under both "Late Roman" and "Byzantine" in the table. Neither can it be ultimately ascertained whether every tomb or sherd scatter from the literature that was dated as "Byzantine" can actually be classified as such with certainty or whether some or even all of them may not in fact be Late Roman-Byzantine. Moreover, the possibility cannot be ruled out that some of the cisterns classified as Late Roman or Byzantine were in fact already built in Early Roman times-given the lack of ceramic evidence, this question cannot be resolved.

Typology	Paleolithic- Chalcolithic	Bronze Age	Age		Iron Age	ae		Hellenistic- Roman Period	istic-	Late Roma Byzantine Period	oman- ine	Late Roman- Islamic Period Byzantine Period	Period	
		EBA	MBA LBA		I A I	II VI	IA IIC	Hell.	Early Rom.	Late Rom.	Byz.	Um.	Ayy./ Mam.	Ottom.
Settlement	1	15	12	14	14	14	3	15	18	26	29	24	17	10
Single complex	1	8	6	11	20	14	3	16	29	82	06	66	30	7
Installation	1		ı	-	ı	-	-	2	9	61	LL	28	9	17
Cistern	1		ı	-	ı	-	-	-	1	58	99	34	9	1
Tomb	6	1	ı		ı	I	I	2	3	39	52	4	1	I
Cave	1	2	ı		1	1	I	1	2	11	11	4	1	1
Sherd scatter	21	15	14	15	15	13	1	5	6	40	57	31	18	1

Tab. 1.2 Number and type of sites for each period in the survey area.

1.5.3.1. Paleolithic/Chalcolithic Period

Only few sites from times preceding the Early Bronze Age could be identified. As expected, no settlements or single complexes were found, and the sites only comprise 21 sherd or lithic scatters and eight tombs (dolmens).

1.5.3.1.1. Lithic Scatter

Of the altogether 21 sites, 16 were previously known from the Hanbury-Tenison survey. However, only four of these could be confirmed or located¹⁶. There were moreover the sites 222/216-1 (Barsīnā) and 228/213-4 (Ruğm al-Ġurābiat).

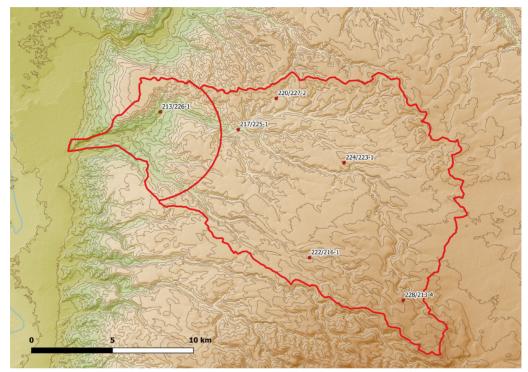


Fig. 1.17 Sites with lithic scatter (P. Leiverkus © BAI/GPIA).

1.5.3.1.2. Dolmens

Only few sites with dolmens or remains of dolmens could be located: two that were described in the literature have meanwhile been destroyed or are untraceable, while three could be newly documented. All of them are located to the west of the modern city of Irbid, on both sides of the Wādī al-'Arab. Three dolmens were found in an erect position whereas at the other four sites, megaliths that were moved to the edges of fields are the only remaining evidence of the dolmens of former times. An exact dating of these dolmens is not undisputed but they seem to go back to the time between 4500 and 3800 BC¹⁷. Only one site contained ceramics; these, however, came from the nearby Late Roman-Byzantine settlement area and were not related to the dolmen.

- 16 The sites 213/226-1 = HT 016; 217/225-1 = HT 066; 220/227-2= HAT 040-043; and 224/223-1 = HAT 095.
- 17 Note the publication by J. Fraser, who dates the dolmens to the Early Bronze Age (ACOR, J. Fraser curator British

Museum)

http://www.acorjordan.org/2017/04/08/visible-dead-dolmens-landscape-acor-video-lecture-dr-james-fraser/

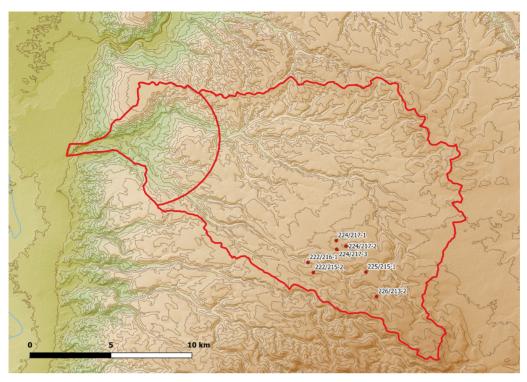


Fig. 1.18 Dolmens in the survey area (P. Leiverkus © BAI/GPIA).

 222/215-2: dolmens, one of them still standing, at least two destroyed; megalith size c. 2 m x 1 m; elevation 538 m.

Fig. 1.19 222/215-2.

Fig. 1.20 222/215-2 overview (looking south).

2) 222/216-1: Megaliths in an agricultural field, possibly remains of a dolmen; elevation 494 m.

Fig. 1.21 222/216-1.

 224/217-1: Dolmen remains; megalith size 2 m x 1 m, one megalith 2.50 m x 2.50 m (identical with Hirbat 'Awār, El-Khouri Site 9), elevation 546 m.

Fig. 1.22 224/217-1 overview.

4) 224/217-2: An area of approximately 2 ha; strewn with stones; tomb; cistern; flint, but no sherds found. L. El-Khouri describes an agricultural field with 44 dolmens, most of them destroyed. Apparently, the dolmens have meanwhile been completely destroyed, and the remains were pushed to the edges of the area or put to a different use entirely. Or identical with site 224/217-3. Al-Gawāyib, elevation 556 m.

Fig. 1.23 224/217-2 overview.

5) 224/217-3: Dolmen tomb near al-Gawāyib; two erect megaliths, each approx. 3 m long, roofed by another one of equal size, thus creating an interior space with a width of 70 cm. Elevation 502 m.

Fig. 1.24 224/217-3.

Fig. 1.25 224/217-3 overview.

6) 225/215-1: Agricultural field with megaliths that have been pushed to the edge of the field or to that of the modern road; the largest megalith has a size of 3.50 m x 2.50 m. Elevation 582 m.

Fig. 1.26 225/215-1.

Fig. 1.27 225/215-1 overview.

- 18 El-Khouri et al. 2006, 125; El-Khouri 2009, 81.
- 19 El-Khouri et al. 2006, 125; El-Khouri 2009, 84. Also: Glueck 1951, 155.

 226/213-2: Megaliths (most of them 2 m x 1 m), probably one dolmen *in situ*, otherwise megaliths pushed to the edges of the field. Elevation 651 m.

Fig. 1.28 226/213-2.

Fig. 1.29 226/213-2 overview (looking north).

- 227/215-1: Located on the east side of Wādī al-Ġafr, south-west of Zibda. A large area of agricultural fields. A complete dolmen and well-preserved rectangular and oval structures were found. They were most probably part of a cemetery¹⁸. Could not be located any more.
- 9) 227/216-1: Located c. 1.4 km northeast of Tall Kafr Yūbā, on a flat hill on the west side of Wādī al-Ġafr, surrounded by a large area of agricultural fields. This is a large area of agricultural fields overlooking Wādī al-Ġafr. Two destroyed dolmens and ten oval or circular structures were found¹⁹. Could not be located any more.

1.5.3.2. Bronze Age

A first look at the Bronze Age findings of the survey does not reveal any surprises: During the Early Bronze Age, the first larger settlements emerge, which, despite a minor decline, continue to exist throughout the Middle Bronze Age into the Late Bronze Age.

Typology	Bronze Age				
	EBA	MBA	LBA		
Settlement	15	12	14		
Single Complex	8	9	11		
Installation	-	-	-		
Cistern	-	-	-		
Tomb	1	-	-		
Cave	2	-	-		
Sherd scatter	15	14	15		

Tab. 1.3 Number and type of Bronze Age sites in the survey area.

1.5.3.2.1. Early Bronze Age

The Early Bronze Age sites are scattered across the entire survey area but they are always located in the vicinity of the wādīs. The individual sites are usually more than 2 km apart from each other (unless they are separated by a wādī; in these cases the distance can be only 1 km). Curiously, no settlements could be verified along the main branch of the Wādī az-Zaḥar.

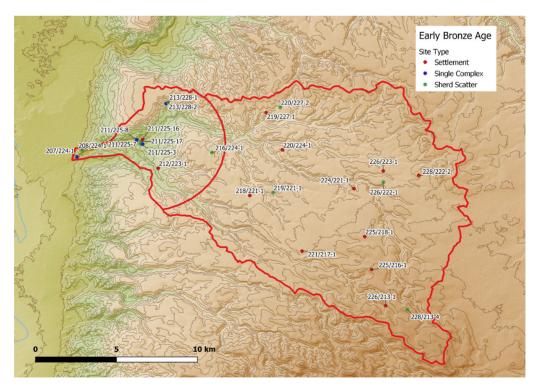


Fig. 1.30 Sites with Early Bronze Age remains (P. Leiverkus © BAI/GPIA).

1.5.3.2.2. Middle Bronze Age

Only one site yielded solely Middle Bronze Age ceramics and none from the Early or Late Bronze Age (225/225-1); the other sites either came into being during the Early Bronze Age or they were still in existence in the Late Bronze Age, or it was altogether impossible to class them with any one specific Bronze Age phase on the basis of the ceramics found.

1.5.3.2.3. Late Bronze Age

The Late Bronze Age settlements are also concentrated close to the wādīs, many of them coinciding with the Early Bronze Age locations. However, the sites located in the centre of the survey area (in the greater area around the modern city of Kafr Asad) were being abandoned during the Late Bronze Age while new settlements were founded in the area of the Wādī az-Zaḥar.

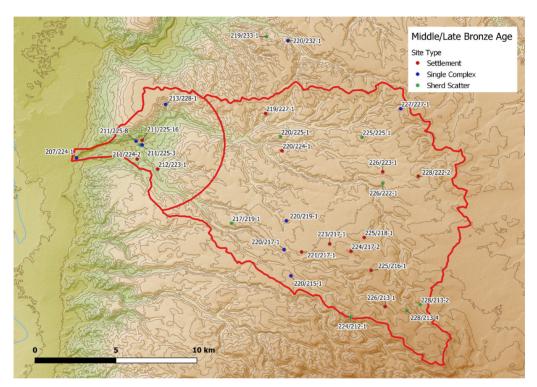


Fig. 1.31 Sites with Middle and Late Bronze Age remains (P. Leiverkus © BAI/GPIA).

Typology	Iron Age	•				
	IA I IA II IA IIC					
Settlement	14	14	3			
Single complex	20	14	3			
Installation	-	-	-			
Cistern	-	-	-			
Tomb	-	-	-			
Cave	1	1	-			
Sherd scatter	15	13	1			

1.5.3.3. Iron Age

Tab. 1.4 Number and type of Iron Age sites in the survey area.

1.5.3.3.1. Iron Age I

Even though the number of settlements remains the same compared to the Late Bronze Age, the quantity of ceramic evidence is clearly on the decline, suggesting a population shrinkage in the major settlements. By contrast, the number of single complexes almost reduplicates. This finding is in accordance with the general historical picture of a decentralisation that took place during the Iron Age I.

1.5.3.3.2. Iron Age II

It is difficult to subdivide the Iron Age II: Although a few characteristic Iron Age IIC ceramics can be identified, a clear distinction between the Iron Ages IIA and IIB solely on the basis of the ceramic evidence is not possible. The number of settlements during the Iron Age IIA/B again remains the same as compared to the Iron Age I; this time, however, the quantity of ceramics is on the rise. Unsurprisingly, the number of sites that can be positively dated to the Iron Age IIC has declined.

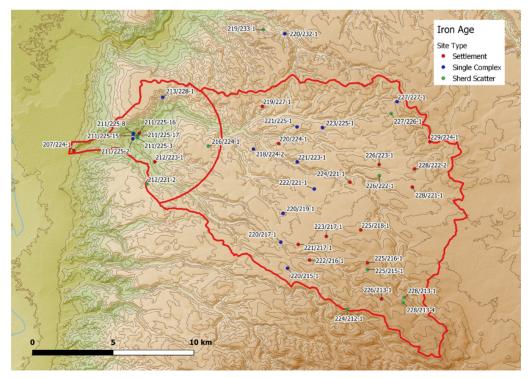


Fig. 1.32 Sites with Iron Age remains (P. Leiverkus © BAI/GPIA).

Typology	Hellenistic-Early Roman Period				
	Hellenistic	Early Roman			
Settlement	15	18			
Single complex	16	29			
Installation	2	6			
Cistern	-	1			
Tomb	2	3			
Cave	1	2			
Sherd scatter	5	9			

1.5.3.4. Hellenistic – Roman Period

 Tab. 1.5
 Number and type of Hellenistic and Roman sites in the survey area.

1.5.3.4.1. Hellenistic Period

A large number of the Hellenistic sites appear to be either new foundations or re-established former settlements. In most cases, no continuous settlement can be discerned. On the other hand, almost all of the settlements that were populated in Hellenistic times continued to be so in Early and Late Roman times, and only few were abandoned. The Hellenistic sites are scattered across the entire survey area.

1.5.3.4.2. Early Roman Period

Not a single site was only populated in Early Roman times. Most of the sites were established during the Hellenistic period (or earlier). Many of them were maintained even in Late Roman times.

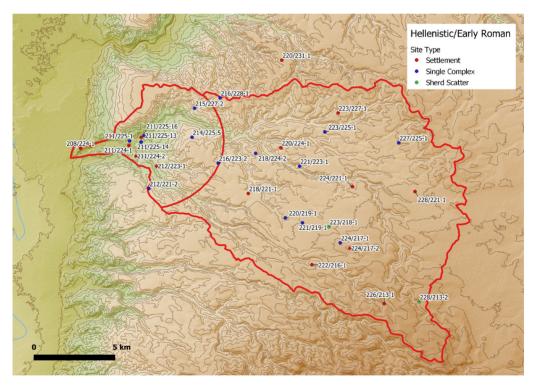


Fig. 1.33 Sites with Hellenistic to Early Roman remains (P. Leiverkus © BAI/GPIA).

1.5.3.5. Late Roman – Byzantine Periods

The increase of Late Roman sites does not come as a surprise—it should be noted, however, that the sites lacking ceramic evidence are hard to date precisely and may thus have been first settled or used either in the Early Roman or in the Byzantine period.

Туроlоду	Late Roman – Byzantine Period				
	Late Roman	Byzantine			
Settlement	26	29			
Single complex	82	90			
Installation	61	77			
Cistern	58	66			
Tomb	39	52			
Cave	11	11			
Sherd scatter	40	57			

 Tab. 1.6
 Number and type of Late Roman and Byzantine sites in the survey area.

1.5.3.5.1. Late Roman Period

Roman rule brought about agricultural advancement: cisterns and water supply systems were built, thus making it possible to turn hitherto unusable areas into arable land. A network of cisterns rendered the people independent of springs, rainwater, or the changing water flow of the wādīs. As a consequence, they could lay out and cultivate fields and also build houses, mansions, or watchtowers in more remote locations. It has already been pointed out that a large number of sherd scatters cannot be reliably dated and it must also be assumed that some of the sherds were not found at their original locations.

1.5.3.5.2. Byzantine Period

The Late Roman period is immediately succeeded by the Byzantine period. With respect to their ceramic finds and the few surviving architectural remains, these two eras can hardly be told apart which is why, when in doubt, installations or tombs are listed in both periods. Prosperity as well as the demographic growth seem to have continued in Byzantine times, and it is now, if not before, that

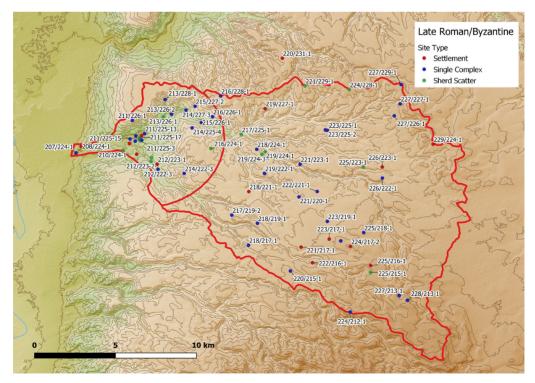


Fig. 1.34 Sites with Late Roman-Byzantine remains (P. Leiverkus © BAI/GPIA).

many smaller settlements were established that to this day define the local settlement structure.

1.5.3.6. Islamic Period

The Islamic period starts with the beginning of the Islamic conquest and comes to an end with the decline of the Ottoman Empire, the subsequent period being regarded as the Modern Age. This long time period can be divided into several historical-political entities—Ummayad, Abbasid, Ayyubid, Mamluk, and Ottoman. Also the pottery production and types change during this period and therefore, give hints for dating archaeological findings.

Typology	Islamic Period					
	Um.	Um. Ayy Maml.				
Settlement	24	17	10			
Single complex	66	30	7			
Installation	28	6	17			
Cistern	34	6	1			
Tomb	4	1	-			
Cave	4	1	-			
Sherd scatter	31	18	1			

Tab. 1.7 Number and type of Islamic period sites in the survey area.

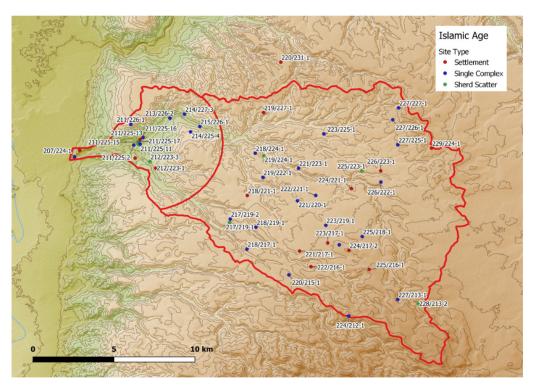


Fig. 1.35 Sites with Islamic remains (P. Leiverkus © BAI/GPIA).

1.5.3.6.1. Umayyad Period

Despite a slightly decreasing settlement density compared to Byzantine times, most of the sites populated during the Late Roman and Byzantine period seem to have been in continued use. Only the number of single complexes declined as apparently the agricultural utilisation of the land did. The ceramic finds give no evidence of any major changes from one period to the next and many forms and patterns stay the same. The archaeological findings suggest a comparably peaceful continuity.

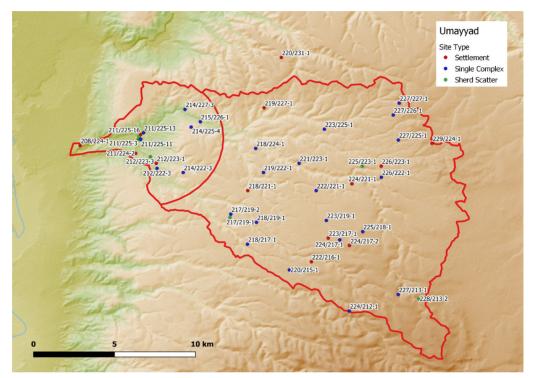


Fig. 1.36 Sites with Umayyad remains (P. Leiverkus © BAI/GPIA).

1.5.3.6.2. Ayyubid-Mamluk Period

In Ayyubid-Mamluk times settlement decreases to almost half the number of sites. This is particularly illustrated by the number of installations and cisterns still in use, which sank from 28 and 34, respectively, to six each. The termination of the use of cisterns is also confirmed by OSL dating (see *Chap.* 3.3.) – the closure of installations due to the absence of water supply, caused by the lack of operational cisterns, on the one hand and the absence of ceramics on the other stands to reason. Apparently, already pre-existing settlements were kept up and none were newly established during this period.

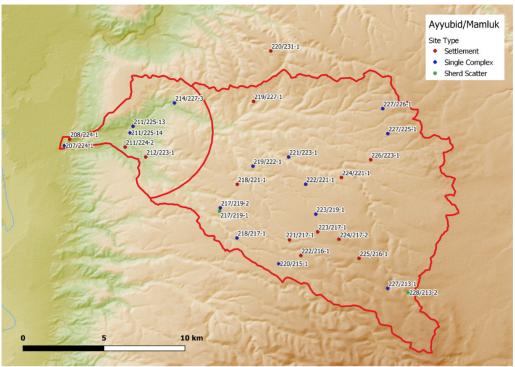


Fig. 1.37 Sites with Ayyubid-Mamluk remains (P. Leiverkus © BAI/GPIA).

1.5.3.6.3. Ottoman Period

Although S. Mittmann had registered many mosques from Ottoman times, in which he identified an abundance of spolia from Roman-Byzantine times that had been built into the walls, not a single one of them could be detected in the Wādī al-'Arab. As a general rule, only very few remains from the Ottoman period can still be found in the area of the wādī, due to modern building activities which almost always replaced Ottoman structures.

The remains of six water mills from Ottoman times were recorded in the Wādī al-'Arab Survey—five of them located in the main wādī of the Wādī al-'Arab, and one in the Wādī az-Zaḥar²⁰.

Most of the water mills from the Middle East seem to belong to the arubah penstock type. As a rule, this type of water mill consists of a stone tower, rising up to 6 to 10 metres and housing a water duct-in the case of the mills from the Wadī al-'Arab and Wādī az-Zahar even two. At the lower end of the duct(s), the water is channelled through a narrow opening, thus generating a jet of water strong enough to spur on a wheel. This guarantees the mill's reliable performance even in circumstances of low water flow²¹. Even though mills of a similar type were verifiably already in use during Roman times (e.g. in Ğaraš or in the Wādī Fēnān)²², the mills discovered in the Wādī al-'Arab must be dated to the Ottoman period. The remains of a dam or a small retaining wall (sites 213/227-1, 215/226-4 and 216/226-2) were obviously related to the water mills.

20 J.-W. Hanbury-Tenison moreover mentions five penstock double shaft water mills. It is possible that 215/226-3 is in fact site HT 081 (215/226-10). Likewise, the dam 216/226-2 appears to be identical with HT 059 (216/226-5); however, given the considerable difference in altitude readings and the scarce information provided by J.-W. Hanbury-Tenison, a positive identification was omitted.

- 21 Kamash 2009, 232. http://archaeologydataservice.ac.uk/ archives/view/kamash_2006/download.cfm?volume=figures
- 22 Kamash 2009, 234 table 10.3.

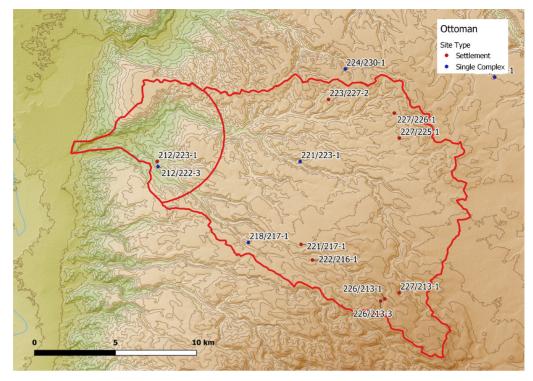


Fig. 1.38 Sites with Ottoman remains (P. Leiverkus © BAI/GPIA).

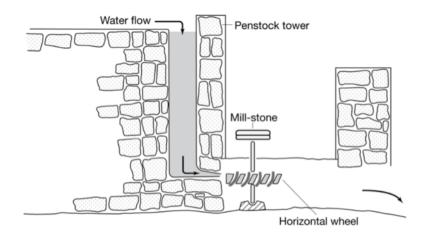


Fig. 1.39 Schematic drawing of a horizontal-wheeled mill with an *arubah* penstock (Zena Kamash).

1.6. Selected finds

In this chapter, a few selected groups of finds or single finds, respectively, from the categories ceramics, stone, and glass will be represented there were no metal finds, except for one indefinable fragment. This selection is not intended to be exhaustive, and each of the finds will also be listed and described in the context of its individual site.

1.6.1. Ceramics

A complete overview of the ceramic finds can be found in the catalogue next to the respective sites. Given the specific nature of a survey, this can only be a general outline without any claim to comprehensiveness. In the following, a few selected specimens will be picked and described in detail.

1.6.1.1. "Galilean bowls"

"Galilean bowl" is the term used for a group of dark red, hard-baked ceramic ware that is characterized by a widening rim with two grooves on the top. A second, similar type is the Kfar Hananya ware²³. In Galilee, it usually occurs in contexts from the 2nd and 3rd centuries AD, sometimes as late as the 4th century AD²⁴. These "Galilean bowls" are a unique feature of northern Palestine²⁵. They were particularly common in Galilee, but also on the Golan, during Roman - Early Byzantine times. Although cooking bowls such as these were mainly sold to the Jewish community they were not restricted to this clientele. On the Tall Zirā'a, numerous specimens of these Galilean types of cooking bowls were found. They date from the period of the declining 1st century BC to the 2nd and 3rd centuries AD²⁶.

In the course of the survey, 24 pieces of this type were found at 12 sites. Even though this small number is definitely no solid basis for any representative statements, the distribution of the finds conveys the impression that they only occur along the main wādīs al-'Arab and az-Zaḥar and are absent in the hinterland: six specimens come from the Tall al-Muntār, four specimens from the sanctuary of al-Qabū, two from the lower city of the Tall Zirā'a – and the others were also found in settlement contexts or in tombs. All this suggests that this ware group was given a particular significance.

Site	Number
208/224-1	6
211/224-1	3
211/224-2	1
211/224-5	1
211/225-16	2
215/222-1	1
215/225-1	1
215/226-1	1
216/228-1	4
218/219-2	1
220/225-1	2
228/222-2	1

Tab. 1.8 Sites with "Galilean bowls".

23 Adan-Bayewitz 1993, 91.

26 On "Galilean bowls" on the Tall Zirā'a, also see Kenkel 2012, 161 f.; Kenkel 2020, 51 f.

²⁴ Adan-Bayewitz 1993, 95.

²⁵ Kuhnen 1990, 287.

1.6.1.2. Stamp Impression

One Hellenistic amphora (WaA 900084-31) carried a stamp impression on the handle, showing a figure in motion. The find came from site 218/221-1, a plateau south of the modern village of Qamm. There, it was excavated in the area of a building pit, which explains its good state of preservation as the find was obviously not exposed to the elements for a longer period of time. The stamp has a width of 1.9 cm and a height of 2.3 cm—the figure itself is 1.7 cm tall. The presumably female figure, judging from its garment with a distinctive drape, is repre-

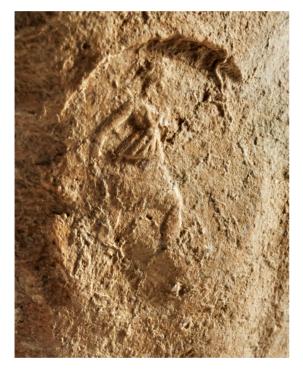


Fig. 1.40 WaA 900084-31.

sented in a walking motion towards the left, its left (heavily attrite) arm in front of and its right arm behind the body. Probably the figure used to carry some sort of object in its left hand. With respect to its modelling, the figure appears to be related to representations on Aegean seals (Wādī ed-Daliye finds from the period between 375 and 335 BC-Late Persian seals from Samaria; Daskaleion bullas from Satrapen archive; documents from an archive of a Punic temple in Carthage, both from the 5th and 4th century BC—Hellenistic style)²⁷. This style was possibly passed on by Phoenicians. Regarding the shape of the stamp, the find WaA 900084-31 resembles a Classical stamp seal (in Hellenistic times, the seal rings become more oval in shape, with a metal ring as archetype). It appears to be the adaptation of a Greek motif. Presumably it is a Hellenistic or alternatively a "Greco-Persian" Prehellenistic-Hellenistic object.

Fig. 1.41 WaA 900084-31.

²⁷ Schroer – Lippke 2014; Leith 1997; Leith 2000; Keel 2010, 340–379.

1.6.1.3. Oil Lamps

A total of seven fragments of oil lamps were found during the survey, one of which dates back to the Iron Age, one to the Hellenistic, one to the Early Roman, and one to the Byzantine period. The other three specimens date back to Late Roman to Umayyad times. Except for WaA 900028-02, all fragments were found in larger settlements along the principal branch of the Wādī al-'Arab (Tall Zirā'a lower city, Tall Ra'ān [Tall Kinīse], Ḥauwar, and HT 026).

Find Number with Add-on	Site	Туре	Term	Decor	Ware Group	Annotation	Dating
900028-02	219/224-1	Mirror	Oil lamp	Relief decor	Cl C Bu2Br		Rom. Byz.
900041-215	219/227-1	Mirror	Oil lamp		Is WM R2B		Byz. Uma.
900054-96	219/227-1	Object, half of it preserved	Oil lamp		WM C R2B		Iron Age
900055-23	211/224-2	Mirror	Oil lamp		Is Grey		Rom. Byz. Uma.
900076-19	221/223-1	Mirror	Oil lamp	Relief decor	Cl H Bu2Br P	Floral relief de- cor with black, dull coat on its upper side	Hell.
900154-32	211/225-16	Snout	Oil lamp		Cl C Bu2Br	Fragments of a snout of a so-called "Herodian" oil lamp	Rom.
900154-46	211/225-16	Mirror	Oil lamp	Relief decor	Cl C Bu2Br-sl	Remains of a red brown, dull ornamental painting	Byz.

Tab. 1.9 Oil lamp finds in the survey area.

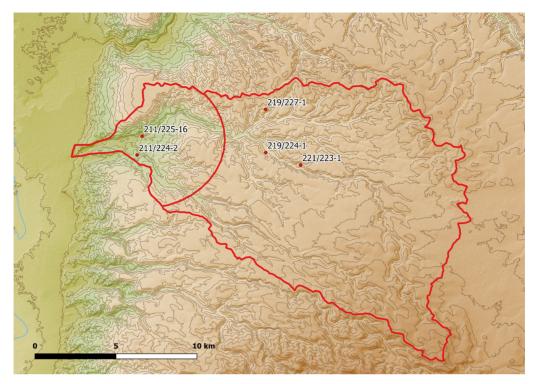


Fig. 1.42 Sites with oil lamps (P. Leiverkus © BAI/GPIA).

Find WaA 900154-32 is one of the so-called "Herodian oil lamps". This type was very common in Judaea during the Early Roman period (37 BC – 135 AD). Though less prevalent, it has also been found in the north (as far as Galilee), in the south (right into the Negev), and in Transjordan. Its basic form consists of a circular body with a usually flat bottom that has been manufactured on a potter's wheel. The characteristic arched snout with its concave sides was handcrafted and subsequently attached to the body. As a rule, the clay utilized is hard-baked and of good quality²⁸.

Fig. 1.43 WaA 900154-32.

1.6.2. Stone Finds

1.6.2.1. Assessment of the Lithic Finds

by Benjamin Schröder

1.6.2.1.1. Introduction

"The landscape turned more and more rugged and mountainous; finally, we descended into a very narrow and deep valley, called Wuâdy el Arab, with a brook that is said to carry water all year long. On its edge there is a mill. On the other side, we had to master a steep ascent until we reached Mkês. The mountain's slopes mostly consist of white, brittle limestone or marl lime with numerous black thin layers of flintstone. The mountain top, again, is made up by solid limestone.²⁹" These observations were made by the explorer U. J. Seetzen during his stay in Umm Qēs (Gadara) —which he calls Mkês—, where he arrived from Şēdūr in the year of 1806. Even though today the north-western access route from Umm Qēs down into the Wādï al-'Arab may not run exactly the same course as the one described above, it is particularly the recent building activity for broadening the serpentines leading into the valley that have again brought to light the "black thin layers of flintstone" described by U. J. Seetzen (*Fig. 1.44*).

Fig. 1.44 Exposed flint deposits in the slope profile along the upper course of the access road in the direction of Umm Qēs (Photo: B. Schröder, autumn 2017).

²⁹ Seetzen 2004, 368. Kindly pointed out by Dr. Jutta Häser (GPIA Amman).

Fig. 1.45 Fragment of a flint nodule and bands of dark brown and black flint in between layers of limestone and marl lime in the slope profile at the roadside (Photo: B. Schröder, autumn 2017).

The material at hand comprises the lithic finds discovered during the hinterland survey conducted by the Gadara Region Project in the Wādī al-'Arab³⁰. It provides an insight into the local production of lithic artifacts and the raw materials used in the process, which include the thin layers of dark flint described above (*Fig. 1.45*)³¹. The resource "Silex"—the word is used at least in archaeology as a generic term for various sedimentary pebble rock types—is formed by excretion and precipitation processes from organic and inorganic silicia dissolves respectively silicon dioxide (SiO₂). It is characterized by specific striking properties like a mussel break³².

Its deposition in between sediments of limestone and lime marl is typical of north-western Jor-

- 30 For the research history overview and the work of the "Gadara Region Project" including the surveys in the Wādī al-'Arab cf. Vieweger – Häser 2017, 13–56.
- 31 The terms "flint" and "silex" as well as "chert" are due to different, regional research traditions often used inconsistently. For terminology cf. Hauptmann 1980, Hahn 1991, 7–11 and Helms 2017, 19. In this essay, "flint" and "silex" are used synonymously (cf. Helms 2017, 19–21).
- 32 Helms 2017, 19; Rokitta-Krumnow 2010, 83; Hahn 1991, 9.
- 33 For a general classification of the region from a geological point of view, cf. e.g. the study of Bender 1968 in general, summarizing Waitzbauer – Petutschnig 2004, 92 f. 100 as well as Rosen 1997, 15–17. 32–34. A recent study on the

dan³³. The layers may also contain larger nodules that are suited for the manufacture of blanks and more complex tools. Apart from these occurrences, the study area also provided additional other means of access to the material, e.g. the platesilex itself and wādī rubbles. It can therefore be safely assumed that flint was both widely available and easily accessible. This, in turn, is considered the factor essentially responsible for the continued use of lithic, "Stone Age" tools at the time when metallurgy was discovered, even into the Iron Age³⁴. The resource occurrence in limestone deposited Eocene and Cretaceous material, such as described by S. A. Rosen and generally mapped for the southern Levant³⁵.

geological characteristics of the Wādī al-'Arab was made by Kraushaar 2016, 13–32.

- 34 On the fundamental scholarly debate dealing with the technology of lithics during the metal ages, refer to the publications by Rosen 1997 and 2013. For further general classification cf. Hesse 2013, 931–942. The coloring can highly vary within a group of raw material, so the distinction made here is only to be understood as provisional.
- 35 Rosen 1997, 32–34. To emphasize are the limits of the here mentioned division and identifications of raw material groups by macroscopic aspects. A representative classification in comparison with the finds of the Tall Zirā'a is to be done subsequently (for a minimum standard of flint raw material descriptions cf. Gebel 1994).

The finds under discussion comprise 42 objects that were recorded as surface finds during the surveys between 2009 and 2014, and taken to the dig house in Umm Qes for further examination and storage. Here, they were first entered into the project's excavation database by K. Soennecken. In the autumn 2017, the finds were inspected, documented, and evaluated by the author. Apart from photographing and drawing selected objects this also involved a general listing of attributes from a morphological point of view³⁶. The material is moreover intended to form part of the author's doctoral thesis on the lithic finds on the Tall Zirā'a. This evaluation, which to date is entirely based on macroscopic observations, aims at providing a fundamental classification of the finds with respect to their function and material properties. Some preliminary divisions of the silex varieties can be distinguished from each other for the present:

Group 1	black, fine-grained
Group 2	dark brown, fine to medium-grained
Group 3	beige, fine to medium-grained
Group 4	light beige, medium-grained
Group 5	grey-beige, fine to medium-grained
Group 6	purple-brown, fine-grained

Tab. 1.10 Silex varieties of the Wādī al-'Arab

When evaluating lithic artifacts it is important to consider that they represent different stages of the manufacturing process, from the core preparation to the fabrication of blanks (primary production) to, finally, the completion of the finished tool (secondary product). Hence, not only the tools themselves have to be rated as finished products but also the preceding forms such as, for instance, flake chips must be included as artifacts³⁷. In contrast, a

- 36 The attribute query is based on the common classifications, which have been described i.a. by Andrefsky 2000; Hahn 1991, Inizian et al. 1992 and Nishiaki 2000. Further important orientations for a detailed recording system form i.a. the dissertations of Rokitta-Krumnow 2010, 75–80 and Helms 2017, 21–31. 399–404. The attached catalogue (*Tab. 1.11*) gives only some selected aspects to provide a first overview of the objects.
- 37 cf. Floss 2013a, 12 f.; Helms 2017, 23 f.
- 38 cf. Helms 2017, 166; Rokitta-Krumnow 2010, 125. Even

blank (flake or blade) or debitage product showing distinct use-wear or after-use retouch can be classified as a tool³⁸.

The subsequent discussion aims at giving an overview of the find material, from the more complex examples of the secondary production to the more ordinary forms. The appended catalogue *(Tab. 1.11)* comprises all finds of the hinterland survey, listed in a thematic order. Objects that do not show any signs of intentional processing are listed as ecofacts and will not be considered below. The figures comprise a selection of objects and will be presented in size 1:2 in *Pl. 1.1* with corresponding references (a, b, etc.). Some tools that were classified as sickles will be illustrated by drawings, with the sickle gloss marked in light grey. They will be evaluated first.

1.6.2.1.2. The Finds

Lithic artifacts that exhibit a particular sheen on their functional area are traditionally defined as sickles³⁹. This lustrous effect develops when a tool is regularly used. It is caused by the flint's reaction with the organic material, which can be discerned macroscopically on the tool's cutting edge and its functional area.

The first object from this category (Cat. No. 1, *Pl. 1.1.a*) is a larger, basal-medial blade fragment with trapezoid cross section. Its left-hand edge was the functional area. Here, the sickle sheen spreads more or less evenly and bilaterally and only becomes narrower towards the bottom on the ventral side. The cutting edge shows fine retouches, indicative of the attendant whetting, some of which, however, were caused by frequent usage. The lateral edge on the opposite side shows a small strip

in this context the problem of post-depositional factors must be pointed out. Some certain blurring must be taken into account, e.g. for irregular retouching in the edge area. For the German research J. Hahn developed the term "GSM-Retusche" ("Gebrauchs-Sediment-Museums-Retusche" corresponding a retouch that leads back to use, sediment or museum) for modifications on edges whose intentionality cannot be determined unambiguously (Hahn 1991, 167 f.).

39 Cf. e.g. Rokitta-Krumnow 2010, 208 f.

of cortex in its medial section and also shortens towards the basal end. It is assumed that larger blades such as this (sickle blades or harvesting knifes) were used solitarily and fitted into a handle made of wood or bone. The basal shortening mentioned above may thus be interpreted as an intentional adjustment with the purpose of mounting the blade to a handle.

Ten more objects with gloss comprise smaller blade segments that nevertheless constitute fully-fledged tools. Smaller sickle segments such as these are notably more common. Several of them are fitted into a bracket made of wood or horn as a group and sometimes additionally fixed with an adhe-sive⁴⁰. Unlike sickles made of one single blade, here the necessary segmentation allows for a curved functional area that is similar to the typical shape of harvesting sickles made of metal that are still in use up to this very day. Differences of the gloss gradient and intensity are essential indicators of an individual segment's position and alignment and also of the manner in which the tool as a whole was handled⁴¹.

Cat. No. 2 (*Pl. 1.1.b*) is a medial blade segment with trapezoid cross section that was carefully retouched circumferentially, mainly on the ventral face. The gloss completely covers the lateral areas of the dorsal side up to the parallel interior ridges. In the left-hand area of the ventral side, only the retouches have a similar sheen while the opposite edge has a thin additional stripe. The gloss's stronger intensity on both lateral edges is evidence of the longer use of this segment and of a dual functional area: obviously the tool was turned around and used in both directions.

Cat. No. 3 (*Pl. 1.1.d*) is a medial-basal sickle segment with triangular cross section and a finely retouched left-hand cutting edge. While there is only little sheen on the ventral side, it is similar to Cat. No. 2 in that dorsally the sheen spreads across almost the entire corresponding lateral area up to the middle ridge. It is therefore safe to assume that the tool was used over a long period of time. Only one gap at its upper end indicates the blade's mounting or maybe the bracket that kept it in place.

The following segment (Cat. No. 4, *Pl. 1.1.c*) was made from a basal-medial, vaguely triangular blade fragment. Its upper end was intentionally broken and both ends were then truncated. The segment's shape suggests that it used to be an end piece inside the shaft. Dorsally, the retouch of the left-hand area is comparatively coarse and steeply angled whereas the cutting edge on the opposite side shows finer dorsal retouches. On the dorsal side, the gloss runs beyond the right middle ridge and tapers very evenly towards the basal end. By contrast, the gloss on the ventral side is significantly less pronounced and a clearance at the segment's upper end is indicative of a former covering.

The same seems to apply to the subsequent segment (Cat. No. 5, *Pl. 1.1.e*). It is a rather small rectangular medial blade segment with a vaguely trapezoid to triangular cross section and dorsal retouch that was based entirely on the ventral side. On the lefthand functional area, the sheen is only visible on the retouches whereas it is more pronounced, even though noticeably irregular, on the ventral surface. Here, too, this seems to indicate a former covering, e.g. by the shaft or by some adhesive, particularly in the top part of the segment.

Cat. No. 6 (*Pl. 1.1.m*) is a larger, slim segment with triangular cross section. Similar to Cat. No. 4, its shape suggests an end piece. Its functional area is denoted by a continuous dorsal retouch along the left-hand edge. Although the sickle sheen is fainter on the dorsal side, it runs as far as the middle ridge in its lower area. On the ventral side, there is a very pronounced sheen running along the cutting edge, flanked by a gap area next to which is a faintly glossy strip on the inside as well as at the distal end: these, again, could be indicative of fastenings.

Cat. No. 7 (*Pl. 1.1.i*) is a full blade segment with triangular cross section. On its left side, there are coarse dorsal retouches, while they are more delicate and bifacial on its right-hand side. Its gloss runs on both sides and becomes fainter towards the blade's basal end.

Cat. No. 8 (*Pl. 1.1.j*) is a rather coarsely executed medial fragment with triangular to trapezoid cross

⁴⁰ For a general definition cf. Drechsler 2013, 791 f.

⁴¹ For a selection of examples of the possible reconstructions cf. Hahn 1991, Fig. 82; Drechsler 2013, Fig. 5; Helms

^{2017,} Fig. 3.90; Nishiaki 2000, Fig. 6.9; Rokitta-Krumnow 2010, Fig. 105.

section. In its right-hand area, it has a cortical reserved zone. The opposite cutting edge has been whetted more or less superficially be means of very basic retouching and has a faint bifacial sheen.

Even though Cat. No. 9 (*Pl. 1.1.k*) also has cortical zones on its dorsal side, this specimen was executed in a much more meticulous fashion. It is a rather broad and thick cortical flake that was fitted to its fastening with the help of steeply angled right-hand retouches. The segment was moreover truncated on both ends. The ventral side of the functional area was finely retouched whereas the retouches of the dorsal side were probably caused by frequent usage.

Cat. Nos. 10 (*Pl. 1.1.g*) and 11 are the last of the sickle parts. They are rather small, less ambiguous fragments. Cat. No. 10 is the medial fragment of a flat blade with trapezoid cross section and may be comparable to Cat. No. 2. There is one major difference, however, in that it shows retouches on its opposite lateral edges both on the dorsal and on the ventral side, indicating two separate functional areas. By contrast, Cat. No. 11 is only a rather small fragment displaying isolated patches of sickle sheen. In this case, these are interpreted as lateral or distal flaking.

Particular significance can be assigned to Cat. No. 12 (*Pl. 1.1.n*) which is the medial-distal fragment of a rather large, very flat flake or a blade with triangular cross section. Its left lateral section consists of a cortical zone whereas the opposite edge is slightly curved inwards and has small bifacial retouches. These might be interpreted as traces of re-sharpening of the functional area, at least, however, they are signs of usage. Like Cat. No. 1, this blade was most probably used for cutting, though not as a harvesting tool. It is therefore assumed that the object constitutes the fragment of a cutting tool.

Cat. No. 13 (*Pl. 1.1.q*) is another cutting tool. It is a rather large, sturdy, and slightly curved blade with triangular cross section. The retouches on both lateral edges are very different, presumably due to a concurrence of re-sharpening, wear and tear, and natural influences. As nevertheless quite distinct working edges can be identified the author is convinced that the tool can be defined as a very coarsely worked cutting tool. A modification at the distal end could also indicate a function as a coarse drill or pick⁴².

The distally and medially fragmented blade Cat. No. 14 (*Pl. 1.1.o*) resembles the previous object in that it, too, presents rather coarse bilateral retouches; these, however, are placed more intentionally from the dorsal side.

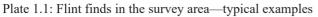
The rather small blade Cat. No. 15 and the rather large flake Cat. No. 16 (Pl. 1.1.r) have also been laterally sharpened. The blade is made up by a rather coarse cortical flake with superficial retouches on its left side, at least part of which may also have been caused by natural forces. A tapering at its distal end, however, is less ambiguous. Cat. No. 16 constitutes an exception among all of the finds discussed as, strictly speaking, it does not consist of the raw material common for flint tools but rather of a conglomerate of various silicates and inclusions. Primarily, the object appears to be a single, possibly natural fragment which, due to its tapered shape, resembles a rather large biface. There is a conspicuous lateral retouch of non-natural origin, which may be indicative of an intentional sharpening of this edge area.

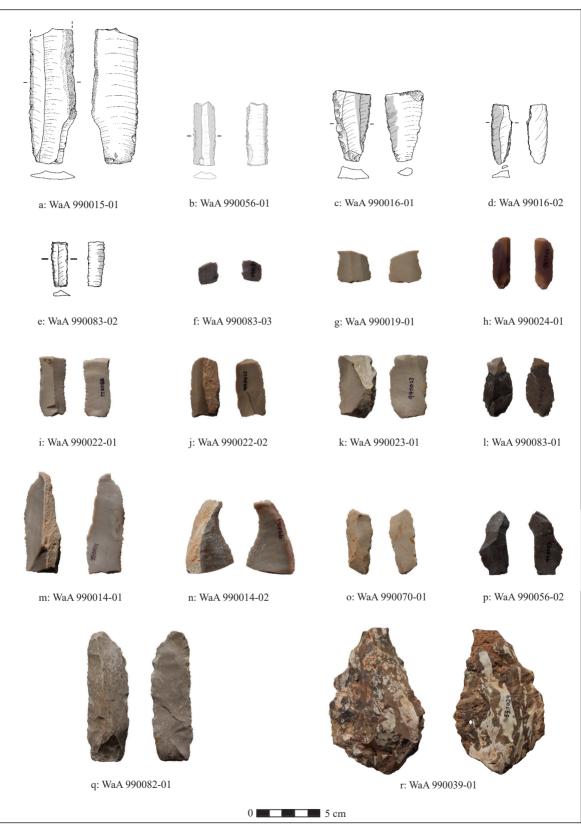
Cat. No. 17 (*Pl. 1.1.h*) is another uncommon object, a basal-medial fragment of a meticulously worked blade, which shows a fine retouch, primarily on its left side. Its possibly superior and definitely less abundant raw material, spotted purple to beigebrown, is remarkable and has been categorized here under the preliminary Group 6. Apart from this possibly more exclusive blade, this material can only be matched with the blade fragment Cat. No. 18 and the basic flake Cat. No. 19. The series of blades with edge retouches is complemented by Cat. No. 20, a basal fragment with left-lateral bifacial retouches.

Non-ambiguous blanks, i.e. target products of the core preparation process that are made into tools in a consecutive production step, can hardly be found among the survey finds, at least not if they are understood as crude and unused base products⁴³. Only one rather coarse fragment appears to have been part of such a flake that was originally chopped off as a base form (Cat. No. 21).

As surface finds run a greater risk of being erroneously identified as artifacts it should be pointed out that the survey finds, too, cannot always be classified with absolute certainty. The Cat. Nos. 22-33 comprise an assortment of miscellaneous basic flakes and blades and also of objects that, in the opinion of the author, can be categorized with relative certainty as parts of the production process. Some of these objects show marks of retouches such as the fragment Cat. No. 22, which has a steep lateral retouch that seems to have been made during the core preparation process. The Cat. Nos. 23, 26 (Pl. 1.1.p), 27, 29 (Pl. 1.1.l), 32, and 33 also display various rather coarse or irregular retouches and indentations. The flat flakes Cat. Nos. 25 and 26 are clearly debitage material. They are flat, roundish flakes that present unmistakable negatives of previous chopping actions.

The Cat. Nos. 35–37 are less distinct pieces. These numbers comprise objects that are either too fragmented or too scattered to be clearly identified and classified. The remaining Cat. Nos. comprise objects that the author confidently considers to be ecofacts.


1.6.2.1.3. Assessment


Considered in context, the lithic finds of the hinterland survey convey a first, actually not representative access to the production and consumption of knapped stone tools that can be proved for the Wādi al-'Arab. The finds even correspond to the tools and debitage that have been found on the Tall Zirā'a and already have been examinated and evaluated by the author. With a view of the raw material, it can be noted that the initially described groups must be understood at least in part as varieties of superordinated raw material groups whose division is not completed until now. Selective observations of the author by his own field surveys, the example flint deposits already described by U. J. Seetzen, and finally the adjustment with the finds of the Tall Zirā'a support this assumption in which leastways the groups 1–3 may illustrate the dominant one.

The form spectrum of the finds, even though it is incomplete, may provide some general hints for the comsumption of lithic artifacts. Insofar the sickle blade (Cat. No. 1) and the sickle segments (Cat. No. 2-11), which present themselves in a typical morphological range of variation⁴⁴, may suggest a certain versatility and flexibility which matches an intensive and epoch independent agricultural exploitation of the Wādi al-'Arab. Furthermore the flakes and blades like the described Cat. Nos. 29 and 13. as well as debitage products like Cat. No. 26, which have been collected as part of the hinterland survey, the widespread distribution of knapped stone tools of the daily usage. High quality and "finer" artifacts, such as Cat. No. 2, 5, 6, and 17 bear witness to the transmission of complex manufacturing techniques and sophisticated selections of resources.

According to the author's estimation, the lithic finds of the hinterland survey in the Wādi al-'Arab presented here, even in comparison to the finds of the Tall Zirā'a, can certainly be seen as additional evidence of the assumption of an intensive cultivation of the Wādī al-'Arab through the ages.

44 cf. Drechsler 2013, 793–795 for further details.

Plate 1.1.	Cat. No.	Inv. No.	Site	Form/Tool	Preserva- tion	Description
a	1	WaA 990015-01	219/227-1	sickle-blade	fragment	left-lateral bifacial retouched
b	2	WaA 990056-01	213/228-2	sickle	complete	bilateral bifacial retouched
с	3	WaA 990016-01	219/227-1	sickle	complete	bilateral dorsal retouched
d	4	WaA 990016-02	219/227-1	sickle	complete	bilateral dorsal retouched
e	5	WaA 990083-02	211/225-16	sickle	complete	bilateral dorsal retouched
m	6	WaA 990014-01	219/227-1	sickle	fragment	left-lateral dorsal retouched
i	7	WaA 990022-01	228/222-2	sickle	fragment	right-lateral bifacial retouched
j	8	WaA 990022-02	228/222-2	sickle	fragment	left-lateral bifacial retoched
k	9	WaA 990023-01	229/224-1	sickle	complete	left-lateral bifacial retouched
g	10	WaA 990019-01	221/225-1	sickle	fragment	medial fragment, bilateral retouched
	11	WaA 990020-01	223/225-1	sickle	fragment	small fragment, right-lateral bifacial retouched
n	12	WaA 990014-02	219/227-1	cutting tool	fragment	right-lateral dorsal retouched
q	13	WaA 990082-01	212/223-1	knife	complete	bilateral bifacial retouched
0	14	WaA 990070-01	221/216-2	blade	fragment	bilateral dorsal retouched
	15	WaA 990021-01	226/223-1	reouched blade	complete	circulating light retouched blade
r	16	WaA 990039-01	216/223-2	axe	complete	circulating light retouched, clear working edge
h	17	WaA 990024-01	229/225-2	blade	fragment	basal-medial fragment, bilateral retouched
f	18	WaA 990083-03	211/225-16	blade	fragment	bilateral bifacial use-retouched
	19	WaA 990083-07	211/225-16	flake	fragment	
	20	WaA 990066-01	211/225-16	blade	fragment	left-lateral bifacial retouched
	21	WaA 990064-02	211/225-14	flake	fragment	
	22	WaA 990068-02	223/225-4	flake		retouched on one edge
	23	WaA 990014-03	219/227-1	flake	uncertain	right-lateral bifacial retouched
	24	WaA 990067-01	213/226-1	flake	complete	right-lateral bifacial retouched
	25	WaA 990018-01	220/231-1	flake	complete	
р	26	WaA 990056-02	213/228-2	flake	fragment	
	27	WaA 990070-02	221/216-2	blade	fragment	bilateral irregular retouched
	28	WaA 990058-01	216/228-1	flake	complete	
1	29	WaA 990083-01	211/225-16	blade	complete	bilateral dorsal retouched
	30	WaA 990083-05	211/225-16	flake	complete	bialteral dorsal retouched
	31	WaA 990083-06	211/225-16	flake	fragment	
	32	WaA 990068-01	223/225-4	blade		bilateral retouched
	33	WaA 990083-04	211/225-16	flake	complete	bilateral dorsal retouched
	34	WaA 990058-04	216/228-1	flake	uncertain	burn marks and yellowish and light-blue
						deposits, recently influenced
	35	WaA 990058-03	216/228-1	flake		
	36	WaA 990058-05	216/228-1	flake		
	37	WaA 990058-02	216/228-1	flake		
	38	WaA 990069-01	224/217-2	ecofact		
	39	WaA 990065-01	211/225-11	ecofact		
	40	WaA 990064-04	211/225-14	ecofact		
	41	WaA 990064-03	211/225-14	ecofact		
	42	WaA 990064-01	211/225-14	ecofact		

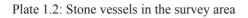
Tab. 1.11 Catalogue of flint finds in the survey area.

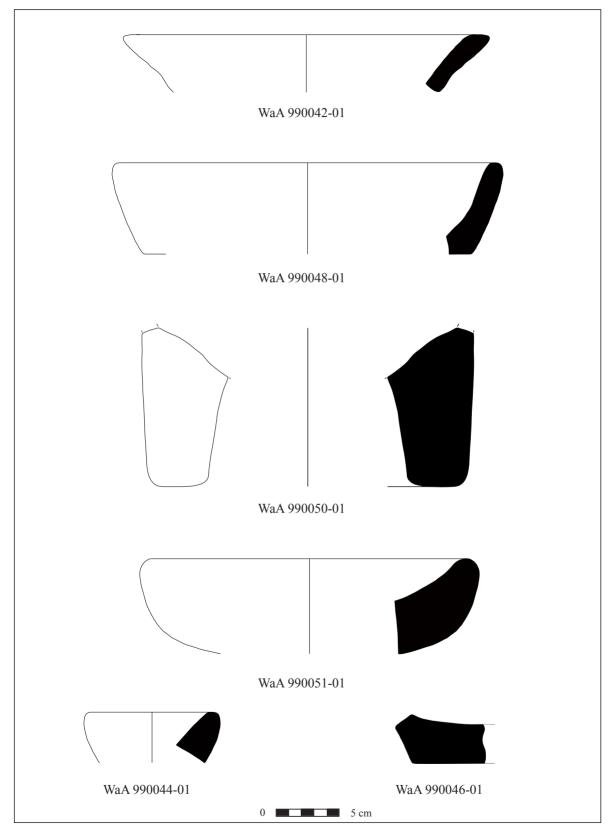
Cross-Section	Colour	Gloss	L	W	Н	D max	Wt
trapezoid	dark-brown	x	10.6	3.5	0.7		36.4
trapezoid	beige	х	5	1.8	0.6		7.5
trapezoid	beige, reddish banded	x	5.4	3	1		19.5
trapezoid	beige, reddish banded	х	4.9	1.7	0.7		
trapezoid	light-beige	x	3.5	1.3	0.5		3
triangular	grey-beige	x	8	2.9	1.2		21.2
triangular	light-beige	x	4.7	2	0,7		8,6
trapezoid	beige	x	4.5	2.3	0.8		9.7
trapezoid	grey-beige	x	4.8	2.9	0.8		15.1
trapezoid	light-beige	x	2.5	2.5	0.5		3.8
triangular	beige, reddish banded	x	2.6	1.4	0.4		1.5
triangular	grey-beige		5.8	3.9	0.6		10.6
triangular	light-beige		10.2	3.3	1.8		59
triangular	light-beige		4.9	2.1	0.9		8.8
triangular	light-grey		6.7	2.2	0.8		14.2
triangular	silicate-mixture		11.4	7.4	2.2		161.6
trapezoid	purple-brown		4	1.4	0.5		3.2
trapezoid	purple-brown		1.7	1.6	0.4		2
irregular	purble-beige				1.4	3.9	
triangular	grey-beige		2.7	1.8	0.8		4.6
rectangular	grey-brown		3.5	3.6	1.4		
	beige		4.4	2.8	0.9		10.5
triangular	light-beige		4.2	2.3	1		10.8
trapezoid	grey-beige		4	2	0.7		5
triangular	brown		3,7	1.9	0.7		4.4
irregular	dark-brown		5.2	2.4	0.7		4.9
rhomboid	grey-beige		3.3	2.2	1.2		7.5
irregular	grey-beige		7.8	5.9	2.9		89.2
triangular,	dark-brown		4.7	2.3	1		6
triangular	dark-brown		3.9	2.3	1		8.6
triangular	reddish-brown		2.8	2.6	0.9		5.6
	grey-beige		3.9	2.2	1		10.6
trapezoid	grey-beige		4.7	3	1.4		18
irregular	brown		4.2	2.3	1.5		
triangular	beige-brown		4.7	3.2	1.2		
irregular	grey-brown		4.8	2.5	1.1		
irregular	yellowish-brown		3.6	2	0.9		
triangular	beige		4.1	1.5	0.8		4
triangular	brown		1.7	2.5	4.2		16.8
rectangular	grey-beige				1.5	2.5	
leniticular	grey-brown		3.2	3	1.5		
irregular	grey-light-beige				0.4	3.6	4

1.6.2.2. Stone Vessels

During the hinterland survey, a total of eight fragments of stone vessels were found. This relatively small number of stone finds is partially due to the fact that larger stone vessels were photographed but not picked up. Especially grinding and working stones as well as those that had been hewn were left *in situ*. The finds comprise seven basalt vessels and one limestone vessel. Of the basalt fragments, six belong to a bowl (three rims, two pedestals, and one bottom) and one formed part of a mortar.

Find number	Site	Mate- rial	Preser- vation	Term	Annotation	Dating
WaA 990013-01	219/227-1	Basalt	Foot	Bowl	Ornamented foot. Tripod bowl with elaborated legs ⁴⁵	Iron Age II
WaA 990042-01	215/224-1	Basalt	Rim and wall	Bowl	Slanted rim lip, rim slightly curved out- wards	
WaA 990046-01	221/219-1	Basalt	Bottom	Bowl with flat base	Flat base of a bowl	
WaA 990048-01	227/225-1	Basalt	Rim to base	Bowl	Circular rim lip. Deep bowl with flat base. Diameter not measurable any more ⁴⁶	Iron Age to Persian period
WaA 990050-01	228/222-2	Basalt	Pedestal	Bowl with pedestals	Crafted very meti- culously ⁴⁷	Iron Age to Persian period
WaA 990051-01	228/222-2	Basalt	Rim to base	Bowl	Circular bowl with thick base	
WaA 990078-01	214/227-3	Basalt	Fragment	Mortar	Half of a presumab- ly circular mortar. D inside 20 cm, outside 32 cm. Wall thickness 7 cm, H 5 cm. Ring base ⁴⁸	Iron Age
WaA 990044-01	219/221-1	Calcite/ limestone	Rim and wall	Vessel	Roughly hewn deep bowl	Early Rom- an


Tab. 1.12 Catalogue of stone vessels in the survey area.


45 Squitieri 2017, 62.

46 Squitieri 2017, 70.

47 Squitieri 2017, 72.

48 Squitieri 2017, 71.

1.6.3. Glass Finds

by Stefanie Hoss

1.6.3.1. Introduction

The basis of this study is the collection of glass finds from the survey in the Wādī al-'Arab performed by the "Gadara Regions Project" team.

The material was made scientifically accessible in several steps. During the survey campaigns 2009–2011 of the "Gadara Regions Project", all 109 glass finds from all periods of the surveyed area were recorded and put into a database with their excavation data, mainly by K. Soennecken. During the 2014 campaign, the author viewed all glass finds and supplemented and amended the records to include the type, literature and other information⁴⁹.

It was possible to determine 53 of the total of 109 finds, a remarkably high number and a testimony to the high proportion of diagnostic sherds in the assembly. Diagnostic sherds is the term used for the rims, necks, handles, stems, feet and bases of glass vessels. These can be assigned to a type—contrary to most body sherds, which can only be determined if adorned with a decoration unique to a specific type, a very rare occurrence.

The remaining 56 sherds were from unknown types. These finds are not included in the catalogue and are only recorded in the project database.

The determination of the glass finds from the survey was done with the help of the typology developed for the glass finds of Tall Zirā'a. Accordingly the group numbers used here are the same as those employed in the publication of the Tall Zirā'a glass finds⁵⁰.

In the following part, the different forms are presented and discussed. The vessels have been categorized into groups by their rim or base forms and decoration.

- 49 In 2014, the German Research Foundation (DFG) granted the author a four-month research scolarship to write this article, for which she is most thankful.
- 50 Hoss 2015; Hoss 2020.
- 51 Hoss 2015, 23.
- 52 Dussart 1998, 51–54; Jennings 2006, 30–36; Keller 2006, 186 f.; Burdajewicz 2009, 168 f. (with further literature); Burdajewicz 2010, 265 f., fig. 1, 1–21, fig. 2, 22–27; Grose

The catalogue of the determinable finds—presented as a table—follows the text, with the finds that were drawn and are presented in *Pl. 1.3* having been assigned a figure number (a, b, etc.). All drawings have a 1:2 scale.

1.6.3.2. The Finds

The first sherd, Cat. No. 1 (*Pl. 1.3.a*), belongs to a mould-made grooved bowl, either of conical or ovoid shape. Both the conical grooved bowls (Hoss group 1) and the ovoid bowls (Hoss group 3) belong to Grose's group A and were used as drinking bowls⁵¹. Bowls of these types are a common find and are often found in high numbers in the Southern Levant, while they occur less regularly and in much smaller numbers in Italy and Greece⁵². They have also occasionally been found in Syria (Dura Europos, Ğabal Hālid) and even in the western part of the Mediterranean and beyond (Spain, Karthago, Marseille and even in Normandy)⁵³.

The oldest finds (from Athenian Agora) are dated to before 150 BC. Others from Ashdod come from contexts dated to the middle of the 2nd century BC. The linear cut bowls replaced both forms around the middle of the 1st century BC^{54} .

Cat. No. 2 (*Pl. 1.3.b*) was part of a free-blown bowl with a fire-rounded, everted rim on a tapering wall (Hoss group 10)⁵⁵. Different variations of the type are known from the mid-1st to the 4th century in the Roman Empire, making the dating very vague. Comparable finds are dated by H. Hamel and S. Greiff in the 3rd and 4th century AD, but O. Dussart and Sh. Hadad demonstrate that similar rims were also found in Byzantine and Umayyad contexts⁵⁶.

2012, 28; Jackson-Tal 2013a, 102 (with further literature).

- 53 Davidson Weinberg 1961, 389 f.; Stern Schlick-Nolte
 1994, 284; Grose 1989, 194, footnote 34; Foy Nenna
 2001, 104; Keller 2006, 186 f.; O'Hea 2005; Honroth 2007, 35.
- 54 Keller 2006, 186 f.
- 55 Hoss 2015, 35.
- 56 Dussart 1998, 67. 69. 80 f.; Hadad 2005, 21, pl. 2, 39. 40;

The next sherd, Cat. No. 3 (*Pl. 1.3.c*) has a long outdrawn hollow fold on a straight wall (Hoss group 17)⁵⁷. The fold follows the wall downwards until it turns in sharply to the base. This distinctive type of large bowl or platter enjoyed a wide distribution in both the western and eastern part of the Roman Empire during the 4th century AD⁵⁸.

The last three parts of bowls, Cat. No. 4-6 (*Pl. 1.3.e*) are ring bases, tooled out of glass by pinching and folding and then attached to the bottom of the bowl (Hoss group 24)⁵⁹. The ring bases can be straight or more sloping, according to the bowl they are attached to. Bases like these are common throughout the Roman Empire; they first appear in the 2nd century, but continue into the Umayyad period⁶⁰.

The Cat. No. 7 has a fire-rounded rim on tapering walls (Hoss group 27)⁶¹. Rims of this description are found on several types of conical beakers. The first of these is a footless conical tumbler often decorated with wheel-cut incisions, trails or drops in a different glass colour⁶². It was also used as a lamp, probably set into metal or wooden tripoids or hanging candelabra.⁶³ It is a typical form of the 4th century in both the western and eastern Roman Empire⁶⁴.

Hamel - Greiff 2014, 150, fig. 5. 6.

- 57 Hoss 2015, 38.
- Isings 1957, 148, form 118; Davidson Weinberg Goldstein 1988, 47 f., fig. 4–7; Cohen 1997, 400, pl. I, 10–12; Dussart 1998, BII 311, 75 (pl. 11, 2–10); Keller 2006, type VII 2, 201, pl. 7a; Hadad 2006, 626, fig. 19.2, 17; Jennings 2006, 75 f., fig. 4.7; Hoss 2015, 40.
- 59 Hoss 2015, 40.
- Davidson Weinberg Goldstein 1988, 58, fig. 4–20; Rütti 1991, Kat. Nr. 5057–5080 (pl. 180. 181); Cohen 1997, 401
 f., pl. II, 9–11; Dussart 1998, BI 4212a, 66 (pl. 6, 10), BI 4222a2/b1, 68 (pl. 7, 11–18), BII 12, 74 (pl. 10, 13–15); Hadad 2005, 21, pl. 3, 72; Jennings 2006, 191–193, fig. 8.5; O'Hea 2012, 304, Cat. No. 44. 45, fig. 629. 630, Jackson-Tal 2013b, pl. 6.2,15—all with further literature.
- 61 Hoss 2015, 53 f.
- 62 Davidson Weinberg Goldstein 1988, 87–89; Israeli 2003, 195 f., Cat. No. 228–231.
- 63 Jennings 2006, 135–137, fig. 6.10.
- 64 Davidson Weinberg Goldstein 1988, 87–94, fig. 4–45 to
 4-47; Cohen 1997, 407 f., pl. III, 7. 8; Israeli 2003, 193–196, Cat. No. 228–231; Keller 2006, type VII 24a/b, p. 213, pl. 13, h–I; Jennings 2006, 88–91, fig, 5.6.
- 65 Davidson Weinberg Goldstein 1988, 62 f., fig. 4–24;
 Cohen 1997, 408–410, Pl. III, 9–13; Dussart 1998, BVIII

Another form has a small, but fairly heavy foot (see below), dated to the 4th and 5th century, and possibly continuing into the Umayyad period⁶⁵.

A third type has a small, massive so-called pad base and also dates to the Late Roman and Early Byzantine (mainly 4th–5th century) period⁶⁶. Several authors also date similar rims more vaguely between the 4th and 7th century or date the whole group of rims into the 3rd and 4th century AD⁶⁷.

The rims of the Cat. No. 8-10 (*Pl. 1.3.e*) are firerounded as well and straight or slightly incurving, they sit on straight walls (Hoss group 28)⁶⁸. The type was widespread in the Roman Empire and had an extremely long period of use, from the late 1st to the 8th century⁶⁹.

The following Cat. No. 11–14 (*Pl. 1.3.f–g*) have everted fire-rounded rims set on straight walls (Hoss group 29)⁷⁰. Rims of this form also occur on several types of beaker from different periods. The oldest of these was found in 1st to 2nd century contexts in Jericho⁷¹. The later forms have in common that they are well represented in Palestine and date to the Roman, Byzantine and Umayyad periods⁷².

2112, BVIII 2113, 106–110, pl. 24; Cohen 2000, 168, pl. 14–16; Keller 2006, 24a/b, p. 213, pl. 13h-i.

- 66 Davidson Weinberg Goldstein 1988, 60–62, fig. 4–23;
 Jackson-Tal 2013c, 54, Nr. 2, fig. 1, 2.
- 67 Keller 2006, 218 f., type 33a, 34a, pl. 15j, 15m; Hamel Greiff 2014, 150, fig. 16, 3–7.
- 68 Hoss 2015, 54–55; for a complete example see Israeli 2003, 144. 159 f. Cat. No. 163.
- 69 Cohen 1997, 410, Pl. III, 20; Dussart 1998, BVIII 111/112, BVIII 15, BVIII 2111, 95–96, 104–106, pl. 21, 1–17, pl. 23, 8–35; Keller 2006, type VII 28a, VII 29 a/b, VII, 31a, VII 32a, pp. 215–218, pl. 15d, 15k–1, 16c, 16f; Jennings 2006, 71 f., fig. 4.1, 6–8, pp. 91–92, fig, 5.7; Jackson-Tal 2012, 184, fig. 8.2, 6–7; O'Hea, 2012, 305, Cat. Nr. 49–51, fig. 633–636—all with further literature.
- 70 Hoss 2015, 55.
- Cohen 1997, 410, pl. III, 18–19; Cohen 2000, 168, pl. II, 14; Israeli 2003, Cat. No. 164, 167, pp. 161–162; Hadad 2005, 21, pl. 2, 37; Jennings 2006, 71 f., fig. 4.1, 2, 4–5 and 91 f., fig, 5.7; Jackson-Tal 2013a, 108, pl. 3.6, 52; Hamel Greiff 2014, 157, fig. 16.5.25–26—all with further literature.
- Dussart 1998, 103; Keller 2006, 217 f., Jennings 2006, 71 f., fig. 4.1; Jennings 2006, 88–91, fig, 5.5, 2, 4.

The two beaker bases Cat. No. 15–16 (*Pl. 1.3.h*) are fashioned with a long drawn-out fold and a high, pushed-in centre (Hoss group 34)⁷³. Bases like these can be separated into rather flat ones, which belong to conical and straight-walled beaker types with everted rims of the 1st and 2nd century, and high bases with a high pushed-in concave centre belong to a type with a round rim, dating to the 4th century⁷⁴. The base pictured in *Pl. 1.3.h* clearly belongs into the former group.

The following four Cat. No. 17–20 are rounded, everted rims on straight walls, which belonged to stemmed goblets (Hoss group 38)⁷⁵. The form is very common in Palestine and is dated to the Byzantine and Umayyad periods⁷⁶.

13 bases of stemmed goblets were found (Cat. No. 21–33, *Pl. 1.3.i*). These are tubular folded goblet bases, with pushed-in concavities, often quite high and carrying a pontil mark (Hoss groups 40–42)⁷⁷. Stemmed goblets are very common in Byzantine and Umayyad Palestine and the wider Levant⁷⁸. They also occur in the rest of the Mediterranean, but were not used in the other regions of the Roman Empire⁷⁹.

One base from a polycandelabrum lamp was also among the finds (Cat. No. 35, *Pl. 1.3.k*). These lamps

- 74 Keller 2006, 220, pl. 16s (early) and 16t (late).
- 75 Hoss 2015, 66.
- 76 Israeli 2003, 197–198, Cat. No. 235–237; Jennings 2006, 131–134, fig. 6.7, 4–5, fig. 6.8, 7–9—all with further literature.
- 77 Hoss 2015, 67.
- 78 Cohen 1997, 405–407, pl. III, 1–5; Dussart BIX 1, BIX
 2, 115–124, pl. 27, pl. 29, 7.37; Hadad 2005, 28, pl. 21,
 400–411; Hadad 2006, 628, fig. 19.3, 56–57, fig. 19.4, 78;
 O'Hea 2012, Nr. 57–60, p. 306, fig. 641–644.
- 79 The following after: Jennings 2006, 123.
- 80 Keller 2006, 225; Hoss 2015, 73 f.
- Cohen 1997, 404, Pl. II, 23–24; Dussart 1998, 88, BVII 22, pl. 16, 11–12; Jennings 2006, 256–257, fig. 11.11, 9. Hadad 2008, 174–175, pl. 5.8, 126–127.
- 82 Hoss 2015, 78.
- Cohen 1997, 419–427, pl. VI, 6, 13, pl. VII, 4–5, pl. VIII, 11–16; Dussart 1998, type BX 1111b2–BX1121b, pp. 128– 132, pl. 32–33, type BX 1125a1–BX1125a2, pp. 132–136, pl. 34,4–35,25, type BX 1143, pp. 138–139, pl. 37, 11–22, type BX 131–132, p. 140, pl. 38, 1–4, type BX 3111–3141, p. 142, pl. 1–6; Cohen 2000, 170, pl. III, 28–29, 34–36; Brosh 2003, 334, 346, 350, Cat. Nr. 431, 455, 462; Israeli

consisted of a metal frame with holes for several glass bowls, which would have been hanging from the ceiling. The glass bowls used in these lamps had long stems, sometimes tubular and sometimes tapering, to balance their fairly heavy contents (water with a surface layer of oil plus a little wick-frame) on the metal frames (Hoss group 44)⁸⁰. The stem base preserved here is hollow, conical and formerly ended in a drop (now missing)⁸¹.

The following four sherds are bottle rims. The first of these (Cat. No. 35, *Pl.1.3.1*) is fire-rounded and angled slightly to form a tapering neck (Hoss group $46)^{82}$. Tapering necks were used on several different types of bottles that were common from the Late Roman to the Late Umayyad periods⁸³.

The next two rims sherds (Cat. No. 36-37, *Pl. 1.3.m*) also have fire-rounded rims, which sit on funnel-shaped mouths and thin necks (Hoss group 47)⁸⁴. Necks of this type could belong to several types of bottle and flasks, dating from the 2nd and 3rd century to the Abbasid period, with a marked emphasis on the Byzantine and Umayyad periods⁸⁵. Some have necks decorated with trails winding around the exterior, as our Cat. No. 37^{86} .

2003, 168–169, 242, Cat. No. 179, 181, 182, 184, 313; Keller 2006, type VII 54a, p. 226, pl. 19h, type VII 79a, p. 234, pl. 220; Hadad 2005, 24–27, pl. 12, 235–237, 244, 246, pl. 18, 352–354; Hadad 2006, 626–627, fig. 19.2, 19–21; Jennings 2006, 77–78, fig. 4.10, 12, p. 177–178, fig. 7.26, 15–20, 22; Jackson-Tal 2007, 487, pl. 8, 5; Hadad 2008, 170–171, pl. 5.4, 57, Jackson-Tal 2012a, 186, fig. 8.3,1,6; O'Hea 2012, Cat. Nr. 65, 68, 70–71, 77, pp. 307–308, Fig. 649, 652, 654–655, 661; Jackson-Tal 2013a, 114, 3.10, 3–5.

- 84 Hoss 2015, 78 f.
- 85 Dussart 1998, type BX 131, p. 140, pl. 38, 1–3; type BX 3212–type BX 3241a/b, pp. 143–147, pl. 40, 6–25, pl. 41, 1–29; Cohen 2000, 170, pl. III, 37, 39; Keller 2006, type VII 52, p. 226, pl. 19f, type 57a–d, pp. 227–229, pl. 20i–p, Typ 58, p. 229, pl. 20q; Hadad 2005, 23–24, pl. 7, 136–138, pl. 11, 201, Hadad 2006, 626 f., fig. 19.3, 37–39; Jennings 2006, 159–161, fig. 7.4–5, 167–168, fig. 7.14, 6, 13–14, 177–178, fig. 7.26, 1–3, 5, 9, 7, 12–14; Hamel Greiff 2014, 154, fig. 16.4,14, 16.4.16, 16.4.17—all with further literature.
- Cohen 1997, 419–425, pl. VI, 3–4, 7-8, pl. VII, 4–5; Dussart 1998, type BX 132, p. 140, pl. 38, 4; Keller 2006, type VII 56b–c, p. 228, pl. 20g–h; Hadad 2005, 24–25, pl. 12, 233–234, pl. 13, 251, 254–258, pl. 14, 272–273; Hadad 2006, 626–627, fig. 19.2, 26–27; Jennings 2006, 113, fig.

⁷³ Hoss 2015, 57.

The last bottle rim sherd (Cat. No. 38, *Pl. 1.3.o*) is infolded and sits on a tapering neck (Hoss group 50). This is the most common design for bottle, flask or jar mouths and was used on a large variety of types from Late Roman times onwards until the Abbasid period, but it was especially common during the Byzantine and Umayyad periods⁸⁷.

The next seven sherds (Cat. No. 39–45, *Pl. 1.3.p*) are all round, free-blown bases, with a concave bottom and a pontil mark (Hoss group 56)⁸⁸. These bases were used for a variety of types of bottles, flasks and jugs during the Late Roman to Umayyad periods⁸⁹.

The following rim sherd (Cat. No. 45) belongs to a jar. Jars are smallish vessels with a wide mouth that either have very short necks or no necks at all. They were used to hold substances too thick to be poured, like creams⁹⁰. According to Dussart, jars of this form date into the Byzantine and Umayyad periods⁹¹.

The next two sherds (Cat. No. 46–47, *Pl.1.3.r*) belong to small bottles, probably used for perfume (Hoss group 64)⁹². As they have rather universal forms, they cannot be dated accurately.

The next sherd (Cat. No. 48) is part of a handle for a twin phial. These vessels have a very distinctive

5.271-9; Hadad 2008, 171, pl. 5.6, 91—all with further literature.

- 87 Cohen 1997, 413, pl. IV, 7–8, 424–427, pl. VI, 17–20, pl. VII, 1–3, 6, pl. VIII, 14; Dussart 1998, type BX 1111b2, p. 128, pl. 32, type BX 1125b1/2, pp. 132–135, pl. 35, 26–46, type 1132b1/2, p. 137, pl. 36, 14–22, pl. 37, 1–7, type BX 123, p. 141, pl. 37, 39, type BXIV 11, pp. 176–177, pl. 59, 6; Israeli 2003, 262, 266, Cat. No. 342, 353; Keller 2006, type VII pp. 61–62, 230, pl. 21b–e; Hadad 2005, 23–25, pl. 9, 165, 168–169, 171–172, 175–176, pl. 11, 200, pl. 13, 254–257, pl. 15, 292, 298, pl. 16, 309–311, 313–314, 316–317; Hadad 2006, 629, fig. 19.4, 72–74; Jennings 2006, 77, fig. 4.10, 11, 13; Jackson-Tal 2007, 486, pl. 9, 3; Hadad 2008, 170–171, pl. 5.5, 74–76—all with further literature.
- 88 Hoss 2015, 81.
- 89 Hadad 2006, 626–627, ig. 19.2, 49–50, Hadad 2008, 170– 171, pl. 5.5, 83; Gorin-Rosen 2010, 226, pl. 10.2, 9–11.
- 90 Israeli 2003, 234.
- 91 Dussart 1998, type BVII 11, pp. 88-89, pl. 16, 20-23.
- 92 Hoss 2015, 87–88.
- 93 Cohen 1997, 417-418, pl. V, 13-16: Dussart 1998, type

form and were use for khol. They have small handles running into decorative trails, often in a different colour to that of the body. This very common regional form is dated to the 4th to 7th century⁹³.

Three different handles are among the finds recorded. The first (Cat. No. 49, *Pl. 1.3.s*) is smooth and has a simple round cross-section, often used for steep handles which are common in jugs and flasks (Hoss group 66)⁹⁴. Two handles (Cat. No. 50–51) are ribbed along the longitudinal axis (Hoss group 67)⁹⁵. They are also steep and it may be supposed that they were used on similar vessels to that of the former group.

Two fragments of bracelets were discovered (Cat. No. 51–52), one opaque dark blue, the other covered with white iridescence, but most likely also dark coloured. Both have a simple round and smooth exterior. They belong to Spaer's type A1, which occurs from the 3rd century onwards⁹⁶.

The last determinable find is a flat, colourless piece of window glass (Cat. No. 53). Because of its lack of colour, it is more than likely that the fragment is post-Umayyad.

BVIII 211–BVIII 2232, 112–113, pl. 57,14–pl. 59,2; Israeli 230–231, Cat. Nr. 287–292; Hoss 2015, 88, group 65.

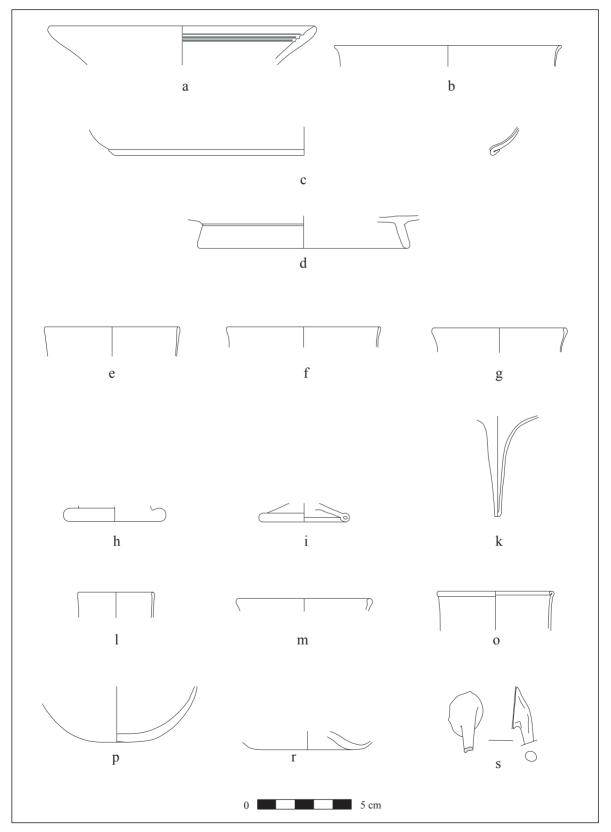
- Davidson Weinberg 1988, 69, fig. 4–30, 257–258; Rütti 1991, Vol. II, 175–177, Kat. Nr. 4134–4203, pl. 162; Dussart 1998, BXIV 1221–BXIV 8, pl. 60–63; Israeli 2003, 175–184, Cat. No. 194, 197, 199, 204, 209, 213, 219, p. 239, Cat. Nr. 307–309, pp. 259–262, Cat. Nr. 333–334, 336–337, 339, 341, 342–343, p. 264, Cat. Nr. 348, p. 266, Cat. Nr. 353, p. 282, Cat. Nr. 379–381; Jennings 2006, 196–198, fig. 8.12; Jackson-Tal 2007, 486, fig. 10, pl. 9, 3; Jackson-Tal 2012, 189, fig. 8.4,3; Hoss 2015, 93–all with further literature.
- Davidson Weinberg 1988, 69, fig. 4–30, 250; Rütti 1991,
 Vol. II, 177–181, Kat. Nr. 4226–4382, pl. 163–168; Cohen 2000, 171–172, pl. IV, 49–50; Israeli 2003, 175–184, Cat.
 No. 195–196, 198, 200–203, 205, 207, 212, 215–217, 218, pp. 237–238, Cat. Nr. 302–304, pp. 256–257, Cat. Nr. 328–332; Jennings 2006, 195–196, fig. 8.11, 5–11; Jackson-Tal 2007, 487, fig. 11, pl. 9, 4; Hoss 2015, 93—all with further literature.
- 96 Spaer 1988, 54.

1.6.3.3. Analysis

The oldest sherd in the collection is clearly Cat. No. 1, belonging to a mould-made grooved bowl dating to 150–50 BC. The rest dates mainly to between the Late Roman and Umayyad periods, with no finds dating to the 1st or 2nd century only (with the possible exception of Cat. No. 15). The earliest securely dated finds after Cat. No. 1 are from the 3rd to 4th century (Cat. No. 2). This leaves a conspicuous gap in glass finds in the Early and Middle Roman periods. Some forms continue into the Abassid period (Cat. No. 36–38), and a few finds are clearly modern and industrial-made (WaA 990002-01) to WaA 990002-03).

The dating of the finds is comparable with the dated finds from Tall Zirā'a, where the earliest glass vessels also are mould-made grooved bowls, followed by a rather distinct gap in Early and Middle Roman period glass finds⁹⁷. With the start of the Late Roman period, glass finds again begin to appear in greater numbers at Tall Zirā'a, but the peak period is definitely in the Byzantine and early Umayyad periods. A very small number of finds may be Abbasid, while the few sherds of modern glass have not been studied at Tall Zirā'a.

The forms found at the Wādī al-'Arab survey are also comparable to those found at Tall Zirā'a, with tableware predominating⁹⁸. Here, the vessels used for drinking such as bottles, beakers, goblets and mould-made drinking bowls make up the overwhelming majority of 36 fragments, while other tableware is just represented with five fragments of bowls. The rest are small quantities of cosmetic vessels, lamps and handles or bracelets. The only caveat to this summary is that (some) goblets may have been used as lamps as well⁹⁹.


The high proportion of stemmed goblet bases (24 %, 13 fragments) among the glass finds is not unusual. Because of their thickness, these bases often survive the post-depositional processes rather better than other vessels with thin walls. The dominance of such parts can substantially distort the picture as it may give the impression that these forms made up a bigger percentage of the glass vessels used than was actually the case¹⁰⁰.

The overall picture of the glass finds from the Wādī al-'Arab survey is thus that the inhabitants of the various smaller settlements in the Wādī al-'Arab had similar preferences and probably also sources for their glass as those of its biggest settlement, Tall Zirā'a.

97 Hoss 2015, 106–139.

98 Hoss 2015, 106–139.

Fig.	Cat. No.	Inv. No.	Site	Form	Preservation
a	1	WaA 990030-01	221/223-1	bowl with grooves	rim
b	2	WaA 990038-06	228/223-1	bowl	rim
c	3	WaA 990031-01	221/225-1	bowl	
	4	WaA 990062-03	223/225-4	bowl	base - ring
	5	WaA 990009-02	220/227-2	bowl	base - ring
d	6	WaA 990029-03	220/224-1	bowl	base - ring
	7	WaA 990009-01	220/227-2	beaker	rim
e	8	WaA 990026-01	218/221-1	beaker	rim
	9	WaA 990038-05	228/223-1	beaker	rim
	10	WaA 990038-07	228/223-1	beaker	rim
	11	WaA 990006-12	214/227-3	beaker	rim
	12	WaA 990033-01	225/218-1	beaker	rim
f	13	WaA 990038-07	228/223-1	beaker	rim
g	14	WaA 990029-06	220/224-1	beaker	rim
h	15	WaA 990035-02	225/225-1	beaker	base – foot
	16	WaA 990005-02	214/227-1	beaker	base – foot
	17	WaA 990034-01	228/222-2	goblet	rim
	18	WaA 990002-06	208/224-1	goblet	2 rim fragments
	19	WaA 990084-03	211/225-16	goblet	rim
	20	WaA 990084-05	211/225-16	goblet	rim
	21	WaA 990005-01	214/227-1	goblet	base – foot
	22	WaA 990038-01	228/223-1	goblet	base – foot
	23	WaA 990026-03	218/221-1	goblet	base – beaker
i	24	WaA 990038-01	228/223-1	goblet	base – foot
	25	WaA 990029-04	220/224-1	goblet	base – foot
	26	WaA 990031-02	221/225-1	goblet	base – foot
	27	WaA 990032-02	224/221-1	goblet	base – ring
	28	WaA 990002-07	208/224-1	goblet	2 foot fragments
	29	WaA 990006-07	214/227-3	goblet	base – foot
	30	WaA 990006-08	214/227-3	goblet	base – foot
	31	WaA 990006-09	214/227-3	goblet	base – foot
	32	WaA 990006-10	214/227-3	goblet	base – foot
	33	WaA 990084-01	211/225-16	goblet	base - ring

Hoss group	Colour	L	W	Н	D max	D open	D base
1/3	Almost colourless, very pale green		3	3			
10	Transparent pale blue		2.2	1		11	
17	Transparent pale green		3.9	2.1		20	
24	Translucent pale green	2.2	1.9	1.2			
24	Transparent pale green		4.9	1.9			8
24	Transparent pale green			1.7			12
27	Transparent pale green		3.4	1.8		5	
28	Transparent pale green			1,5	8	8	
28	Transparent pale blue		1.4	1.5		7	
28	Transparent pale blue		2.4	1.2		5	
29	Transparent pale turquoise		2.4	1.3		7	
29	Transparent pale blue		1.9	1.5			8
29	Transparent pale blue		2.4	1.2		5	
29	Transparent pale blue		1.8	1.3		7	
34	Opaque translucent brownish-purple			1.1			4.5
34	Transparent pale green	2.7	2.5	0.8			2.5
38	Transparent pale green		1.9	1.6	7	7	
38	Transparent pale blue		1.9	1.2		5	
38	Transparent bluish green		3.1	1.9		7	
38	Transparent bluish green		3.7	2.5		8	
41–42	Transparent pale green	2.9	2.7	1			2.5
41–42	Transparent pale blue			1.1			4
41	Transparent pale blue	2	2				6
42	Transparent pale blue			1.1			4
42	Transparent pale green			0.9			5
42	Transparent pale green	2	1.3				5
42	Transparent pale blue	2.4	0.6	0.7			8
42	Transparent pale blue		2.4	0.4			4
42	Translucent pale turqoise	2.9	1.6				2
42	Translucent pale turqoise	2.9	1.5				4
42	Transparent pale green	2.8	2				2.5
42	Transparent pale green	2	1.5				3
42	Transparent bluish green		1.6	1			

Fig.	Cat. No.	Inv. No.	Site	Form	Preservation		
k	34	WaA 990032-01	224/221-1	lamp	base		
1	35	WaA 990026-02	218/221-1	bottle	rim		
m	36	WaA 990028-01	220/220-1	bottle	rim		
	37	WaA 990084-02	211/225-16	bottle with thread deco- ration	rim		
0	38	WaA 990038-04	228/223-1	bottle	rim		
	39	WaA 990029-01	220/224-1	bottle	base		
p	40	WaA 990029-02	220/224-1	bottle	base		
	41	WaA 990038-02	228/223-1	bottle	base with part handle		
	42	WaA 990005-03	214/227-1	bottle	base		
	43	WaA 990005-04	214/227-1	bottle	base		
	44	WaA 990005-05	214/227-1	bottle	base		
	45	WaA 990006-11	214/227-3	jar	rim		
	46	WaA 990084-04	211/225-16	bottle	rim		
r	47	WaA 990035-03	225/225-1	bottle	base		
	48	WaA 990028-02	220/220-1	twin phials	handle		
s	49	WaA 990035-05	225/225-1	handle	handle		
	50	WaA 990038-03	228/223-1	handle	handle		
	51	WaA 990011-01	214/227-1	handle	handle		
	51	WaA 990012-01	220/227-2	bracelet	2 fragments		
	52	WaA 990008-01	219/227-1	bracelet	fragment		
	53	WaA 990026-05	218/221-1	window	fragment		

Tab. 1.13 Catalogue of glass finds in the survey area.

Hoss group	Colour	L	W	Н	D max	D open	D base
45	Transparent turqoise			5.1	3.2		
46	Transparent pale blue		1.2	1.5			
47	Transparent pale green		1.8	0.8			5
47	Translucent yellowish green		1.9	2.1			
50	Transparent very pale blue		1.7	2.1		6	
56	Translucent turqoise	7	8.4	0.6			
56	Translucent turqoise	4.1	8.2	0.6			
56	Transparent pale blue			2.9			
56	Transparent pale green	2.7	2.5	0.8			
56	Transparent pale blue	3.8	2.8	0.8			
56	Transparent pale blue	2.8	2.2	0.4			
63	Translucent pale turqoise		2.8	1.4		5	
64	Transparent bluish green		2.6	3.2		1.5	
64	Transparent pale green	3.5		1			6
65	Tanslucent pale green			2			
66	Translucent turqoise			3			
67	Transparent pale blue			3	1		
67	Greyish mixed with pinkish-purple			2.7	0.7		
73	Opaque dark blue	4	0.5				
73	Covered in strong white iridescence, but dark coloured	3.3	0.9				
74	Transparent colourless		2.6	4.2			

1.7. Destructions

by Katja Soennecken/Patrick Leiverkus

One important result of revisiting the previously published sites during the survey in the Wādī al-'Arab is that heavy destruction of many sites in the last decades could be recorded. The rapid increase of deterioration is alarming. Only recently a large tall with Roman, Byzantine, and Islamic settlements (no. 26 in the Hanbury-Tenison survey; 211/224-2) south of Tall Zirā'a was completely destroyed by bulldozing. In an area of approximately 130 m x 90 m (maybe more before the destruction in modern times) ancient remains could be observed—some of the stones still *in situ*, but most of them shoved away. The section produced by a bulldozer showed at least two layers of a Roman-Byzantine settlement, divided by layers of ash.

Unfortunately, in spite of more recently increased awareness and a multitude of measures undertaken to promote this awareness, there has

Fig. 1.46 Lower city of Tall Zirā'a, 211/225-16 in 2011.

Fig. 1.47 Lower city of Tall Zirā'a, 211/225-16 in 2017.

been no decline in destructions such as these and even the Tall Zirā'a (2016) as well as the northwesterly lower town (2017) have been affected.

Almost all of the modern villages turned out to date back at least to the Roman and/or Byzantine periods, some of them to the Iron Age or the Bronze Age. Only very few of the ancient settlements have not been covered and destroyed by modern settlements. That also includes most of the Islamic sites of the Wādī al-'Arab. It is particularly sad to note that none of the old mosques in the area of the wādī—some of them dating back to the medieval period—are in existence any longer. To our knowledge, the last old mosque in the area can be found in the village of Ḥarǧā. Even this one is in a very bad condition (site 233/229-1, *Fig. 1.48*).

Several smaller sites were destroyed by agricultural activities. Olive tree cultivation especially leaves sites in an unrecognizable state. These observations led the members of the "Gadara Region Project" to the firm commitment to this survey not only as a necessary complement to an excavation but also as an opportunity to salvage information on the history of the Wādī al-'Arab, most of which will be lost in the near future.

Despite the continuing demolition of the ancient sites, we could collect a representative amount of

pottery from all sites, from which we can derive a concise overview of the history of the $W\bar{a}d\bar{1}$ al-'Arab.

Apart from these heavy destructions another problem emerged very clearly: most of the unknown or at least unpublished sites showed traces of recent unauthorised excavations/digging. These mainly concentrated on tombs (metal detectors), and most of the finds were removed. Two examples:

One site was first described by Mittmann and called Hirbat Srīs (M 059; 228/221-1). When we visited the 11/2 ha site, the vegetation was burnt down. We found pottery, tesserae, a cistern and a robber trench (3 layers of ashlar masonry visible). The pottery could be dated to Roman-Byzantine-Islamic (Umayyad) periods. Another site was not previously published and is located north of Fū'arā, south-west of Wādī al-'Arab (220/224-1). An area of approximately 2 ha (250 m x 80 m) was covered with pottery, tesserae and some pieces of glass. Additionally cisterns, a quarry, some natural caves and tombs were found. Most of the tombs were only visible because of recent robber trenches, and nearly all of them were shaft tombs. In one robber trench, ashlar blocks could be seen. The pottery dates to Roman-Byzantine-Islamic periods and suggests at least two phases of occupation.

Fig. 1.48 Site 233/229-1 Mosque with integrated Roman sarcophagus and architrave (© BAI/GPIA).

1.8. Bibliography

Abél 1933

F. M. Abél, Géographie de la Palestine I – Géographie Physique et Historique (Paris 1933)

Abél 1938

F. M. Abél, Géographie de la Palestine II – Géographie Politique les Villes (Paris 1938)

Adan-Bayewitz 1993

D. Adan-Bayewitz, Common Pottery in Roman Galilee – A Study of Local Trade (Tel Aviv 1993)

Al-Azzam 2010

M. Al-Azzam, Hofa Church – An Artistic and Architectural Study, Newsletter of the Institute of Archaeology and Anthropology Yarmouk University Irbid-Jordan 30, 2010, 17

Albright 1929

W. F. Albright, New Israelite and Pre-Israelite Sites – The Spring Trip of 1929, BASOR 35, 1929, 1–14

Andrefsky 2000

W. Andrefsky, Lithics – Macroscopic Approaches to Analysis (Cambridge 1998)

Al-Shami 2005

A. Al-Shami, A New Discovery at Bayt Ras / Capitolias Irbid, AAJ 49, 2005, 509–520

Ball 2001

W. Ball, Rome in the East – The Transformation of an Empire (London 2001)

Bankirer – Marder 2012

R. Y. Bankirer – O. Marder, The Flint Assemblage of Area M, in: Excavations at Tel Beth–Shean, 1989–1996. Volume IV The Fourth and Third Millennia BCE, edited by A. Mazar, Jerusalem: Israel Exploration Society and the Hebrew University of Jerusalem (Jerusalem 2012) 403–421

Banning - Fawcett 1983

E. B. Banning – C. Fawcett, Man-Land Relationships in the Ancient Wādī Ziqlab: Report on the 1981 Survey, AAJ 27, 1983, 291–309

Bednarik 2008

R. G. Bednarik, Cupules, in: Rock Art Research 2008, Volume 25.1, 61–100

Bender 1968

F. Bender, Geologie von Jordanien. Beiträge zur regionalen Geologie der Erde 7 (Berlin – Stuttgart 1968)

Bienert - Häser 2004

H.-D. Bienert – J. Häser, "Jeder von Euch baue sich eine Zisterne in seinem Hause" - Wasserwirtschaft in Jordanien im Laufe der Jahrtausende, in: Gesichter des Orients - 10000 Jahre Kunst und Kultur aus Jordanien, Begleitband zur Ausstellung der Kunst- und Ausstellungshalle der Bundesrepublik Deutschland, Bonn in Kooperation mit dem Vorderasiatischen Museum, Staatliche Museen zu Berlin - Stiftung Preußischer Kulturbesitz: Berlin, Altes Museum, Museumsinsel "Gesichter des Orients - 10000 Jahre Kunst und Kultur aus Jordanien", 8. Oktober 2004 bis 9. Januar 2005; Kunst- und Ausstellungshalle der Bundesrepublik Deutschland, Bonn "10000 Jahre Kunst und Kultur aus Jordanien - Gesichter des Orients", 8. April bis 21. August 2005 (Mainz 2004) 17-27

Brosh 2003

N. Brosh, Glass in the Islamic period, in: Y. Israeli (ed.), Ancient Glass in the Israel Museum. The Eliahu Dobkin Collection and Other Gifts, Jerusalem: The Israel Museum (Jerusalem 2003) 319–383

Bührig 2003

C. Bührig, Von der befestigten Kuppensiedlung zur repräsentativen Straßensiedlung entlang der Ost-West-Achse. Wachstumsphasen der hellenistisch-römischen Stadt Gadara, in: Deutsches Archäologisches Institut (ed.), Die Stadt als Großbaustelle. Von der Antike bis zur Neuzeit (Berlin 2003) 56–65

Bührig 2004

C. Bührig, »Alle Wege führen nach Rom« – Die Einbindung der Dekapolis-Städte in das römische Verkehrsnetz, in: Gesichter des Orients – 10000 Jahre Kunst und Kultur aus Jordanien, Begleitband zur Ausstellung der Kunst- und Ausstellungshalle der Bundesrepublik Deutschland, Bonn in Kooperation mit dem Vorderasiatischen Museum, Staatliche Museen zu Berlin – Stiftung Preußischer Kulturbesitz: Berlin, Altes Museum, Museumsinsel "Gesichter des Orients – 10000 Jahre Kunst und Kultur aus Jordanien", 8. Oktober 2004 bis 9. Januar 2005; Kunst- und Ausstellungshalle der Bundesrepublik Deutschland, Bonn "10000 Jahre Kunst und Kultur aus Jordanien – Gesichter des Orients", 8. April bis 21. August 2005 (Mainz 2004) 183–194

Bührig 2008

C. Bührig, Gadara / Jadar / Umm Qays. Continuity and Change of Urban Structures from a Hellenistic Hilltop Site to an Umayyad Scattered Settlement, in: K. Bartl – M. Abd Al-Razzaq (eds.), Residences, Castles, Settlements. Transformation Processes from Late Antiquity to Early Islam in Bilad ash-Sham, OrA 24 (Rahden/Westf. 2008) 97–113

Bührig 2009

C. Bührig, The 'Eastern City Area' of Gadara (Umm Qays): Preliminary Results on the Urban and Functional Structures Between the Hellenistic and Byzantine Periods, in: R. Harahsheh – S. Nsour – H. Taher – S. Khouri (eds.) SHAJ 10 (Amman 2009) 369–376

Bührig 2011

C. Bührig, Jahresbericht 2010 des Deutschen Archäologischen Instituts: Gadara/Umm Qais (Jordanien), AA 2011, 257–258 https://www.dainst.org/ e4c4-4614-9b1a-56c0d32ce8f8 (02.08.2015)

Bührig 2012

C. Bührig, Determinanten städtischer Entwicklung Gadaras (2. Jahrhundert v. Chr. – 8. Jahrhundert n. Chr.) – Straße, Platz und Tunnel, in: O. Dally – F. Fless – R. Haensch – F. Pirson – S. Sievers (eds.), Politische Räume in vormodernen Gesellschaften. Gestaltung – Wahrnehmung – Funktion. Internationale Tagung des DAI und des DFG-Exzellenzclusters TOPOI vom 18.–22. November 2009 in Berlin = Menschen – Kulturen – Traditionen. Studien aus den Forschungsclustern des Deutschen Archäologischen Instituts 6 (Rahden/Westf. 2012) 233–254

Bührig 2014

C. Bührig, Urban Building Policy in Gadara. Polychrome Architecture Built Merely with Local Building Material?, in: F. Al-Hmoud (ed.), SHAJ 11 (Amman 2014) 187–195

Bührig – Riedl 2001

C. Bührig – N. Riedl, Eine überregionale Verkehrsverbindung in flavischer Zeit, in: E. Olshausen – H. Sonnabend (eds.), Stuttgarter Kolloquium zur Historischen Geographie des Altertums 7, 1999. Zu Wasser und zu Land. Verkehrswege in der Antiken Welt = Geographica Historica 17 (Stuttgart 2001) 263–272

Burckhardt 1822

J. L. Burckhardt, Travel in Syria and in the Holy Land (London 1822)

Burdajewicz 2009

M. Burdajewicz, The glass vessels, in: A. Segal – J. Mlynarczyk – M. Burdajewicz (eds.), Excavation of the Hellenistic site in Kibbutz Sha'ar-Ha-'Amakim (Gaba) 1984–1998, Zinman Institute of Archaeology (Haifa 2009) 167–180

Burdajewicz 2010

M. Burdajewicz, Glass Finds from Geronisos Island. Report of the Department of Antiquities (Cyprus 2010)

Cohen 1997

E. Cohen, The Roman, Byzantine and Umayyad Glass, in: Y. Hirschfeld (ed.), The Roman Baths of Hammat Gader, Final Report. The Israel Exploration Society (Jerusalem 1997) 396–431

Cohen 2000

E. Cohen, Roman and Byzantine Glass, in: Y. Hischfeld (ed.) Ramat Hanadiv Excavations. Final Report of the 1984–1998 Excavations, The Israel Exploration Society (Jerusalem 2000) 166–186

Davidson Weinberg 1961

G. Davidson Weinberg, Hellenistic glass vessels from the Athenian Agora, Hesperia 30, 1961, 380– 392

Davidson Weinberg 1970

G. Davidson Weinberg, Hellenistic glass from Tel Anafa in Upper Galiliee, Journal of Glass Studies 12, 17–27

Davidson Weinberg - Goldstein 1988

G. Davidson Weinberg – S. M. Goldstein, The Glass Vessels, in G. D. Weinberg (ed.), Excavations at Jalame. Site of a Glass Factory in Late Roman Palestine (Columbia, USA 1988), 38–102

Decker 2009

M. Decker, Tilling the Hateful Earth – Agricultural Production and Trade in the Late Antique East (Oxford 2009). http://oxfordindex.oup.com/view/10.1093/acprof:o so/9780199565283.003.0009> (16.10.2013)

de Contenson 1964

H. de Contenson, The 1953 Survey in the Yarmuk and Jordan Valleys, AAJ 8/9, 1964, 30–46

Döring 2012

M. Döring, Wasser für die Dekapolis – Jordanisches Bergland birgt längsten bisher bekannten Aquädukttunnel. Ein Zwischenbericht, in: F. Klimscha – R. Eichmann – C. Schuler – H. Fahlbusch (eds.), Wasserwirtschaftliche Innovationen im archäologischen Kontext. Von den prähistorischen Anfängen bis zu den Metropolen der Antike = MKT 5 (Rahden/Westf. 2012) 225–243

Döring 2016

M. Döring, Wasser für die Dekapolis. Römische Fernwasserleitung in Syrien und Jordanien (Siegburg 2016)

Drechsler 2013

P. Drechsler, Erntemesser und Sicheln, in: H. Floss (ed.), Steinartefakte. Vom Altpaläolithikum bis in die Neuzeit ²(Tübingen 2013) 791–806

Dussart 1988

O. Dussart, La verre en Jordanie et en Syrie du Sud. Bibliothèque archéologique et historique 152 (Beirut 1988)

El-Khouri 2007a

L. El-Khouri, Roman and Byzantine Settlements in the Region of West Irbid, PEQ 139, 2007, 167–186

El-Khouri 2007b

L. El-Khouri, Barsinia, in: S. Savage – D. Keller, Archaeology in Jordan, 2006 Season, AJA 111, 3, 523–547

El-Khouri 2009

L. El-Khouri, Roman Settlements in the Region of Northwest Jordan. Archaeological Studies (Münster 2009)

El-Khouri et al. 2006

L. El-Khouri – W. Abu-Azizeh – T. Steimer-Herbet, The West Irbid Survey (WIS) 2005. Preliminary Report, AAJ 50, 2006, 121–138

Fayad 1996 (unpublished)

S. Fayad, Al-Taqrir al-awal lihafriat Deir as-Sa'na limosem 1996 (arabisch), Department of Antiquities of Jordan (Amman 1996 unpublished)

Floss 2013a

H. Floss, Einleitung: Steinartefakte aus unserer Sicht, in: H. Floss (ed.), Steinartefakte. Vom Altpaläolithikum bis in die Neuzeit ²(Tübingen 2013) 11–14

Floss 2013b

H. Floss, Grundbegriffe der Artefaktmorphologie und der Bruchmechanik, in: H. Floss (ed.), Steinartefakte. Vom Altpaläolithikum bis in die Neuzeit ²(Tübingen 2013) 117–132

Foy - Nenna 2001

D. Foy – M.-D. Nenna, Tout feu du sable. Millle ans de verre antique dans le Midi de la France (Marseille 2001)

Fraser 2015

J. Fraser, Dolmens in the Levant (PhD thesis, University of Sydney 2015)

Freeman 2008

P. W. M. Freeman, The Roman Period, in: R. B. Adams (ed.), Jordan – An Archaeological Reader (London 2008) 413–441

Fuller 1987

M. J. Fuller, Abila of the Decapolis. A Graeco-Roman City in Transjordan (Diss. Washington University St. Louis MO 1987)

Gardener - McQuitty 1987

M. Gardener – A. McQuitty, A water mill in Wādī el-Arab, North Jordan and water mill development, PEQ 119, 1987, 24–32

Gebel 1994

H.-G. Gebel, Proposal on Minimum Standards of Flint Raw Material Descriptions, in: Neo-Lithics 2, 1994, 4–5

Glueck 1939

N. Glueck, Explorations in Eastern Palestine 3 = AASOR 18–19 (New Haven 1939)

Glueck 1942

N. Glueck, Further Explorations in Eastern Palestine, BASOR 86, 1942, 14–24

Glueck 1951

N. Glueck, Explorations in Eastern Palestine 4 (New Haven 1951)

Gorin-Rosen 2010

Y. Gorin-Rosen, The Islamic glass vessels, in: O. Gutman, Ramla – Final Report on the Excavations north of the White Mosque. Qedem 51 (Jerusalem 2010) 213–264

Graf 2001a

D. F. Graf, Towns and Countryside in Roman Arabia During Late Antiquity, in T. S. Burns – J. W. Eadie (eds.), Urban Centres and Rural Contexts in Late Antiquity (Michigan 2001) 219–240

Graf 2001b

D. F. Graf, First Millennium AD: Roman and Byzantine Periods Landscape Archaeology and Settlement Pattern, in: Department of Antiquities (eds.), SHAJ 7, 2001, 469–480

Grose 1989

D. F. Grose, The Toledo Museum of Art. Early Ancient Glass: Core-Formed, Rod-Formed, and Cast Vessels and Objects from the Late Bronze Age to the Early Roman Empire, 1600 B.C. to A.D. 50 (New York 1989)

Grose 2012

D. F. Grose, The Pre-Hellenistic, Hellenistic, Roman and Islamic Glass from Tel Anafa', in: S. C. Herbert – A. M. Berlin (eds), Tel Anafa II, ii, Glass vessels, Lamps, Objects of Metal, and Groundstone and Other Stone Tools and Vessels, Kelsey Museum Fieldwork (Ann Abor, USA, 2012) 1–98

Hadad 1989

Sh. Hadad, Glass lamps from the Byzantine through Mamluk periods at Beth Shean, Israel, Journal of Glass Studies 40, 1989, 63–76

Hadad 2005

Sh. Hadad, Islamic glass vessels from the Hebrew University excavations at Beth Shean. Excavations at Beth Shean Vol. 2, Qedem Reports 8 (Jerusalem 2005)

Hadad 2006

Sh. Hadad, Glass Finds, in: Mazar, A. (ed.) Excavations at Beth-Shean 1989–1996, Vol. 1: From the Late Bronze Age IIB to the Medieval Period (Jerusalem 2006) 626–637

Hadad 2008

Sh. Hadad, Glass Vessels, in: Y. Hischfeld – O. Gutfeld, Tiberias: Excavations in the House of the Bronzes. Final Report, Vol. 1: Architecture, Stratigraphy and Small Finds, Qedem 48 (Jerusalem 2008) 167–190

Hahn 1991

J. Hahn, Erkennen und Bestimmen von Stein- und Knochenartefakten. Einführung in die Artefakt-

morphologie, Archaeologica Venatoria 10 (Tübingen 1991)

Hamarneh 2010

B. Hamarneh, Dynamics and Transformation of the Rural Settlements of Provincia Arabia and Palaestina Tertia in the Omayyad and Early Abbasid Periods. Archaeological Evidence, in: P. Matthiae – F. Pinnock – L. Nigro – N. Marchetti (eds.), Proceedings of the 6th International Congress of the Archaeology of the Ancient Near East, 5–10 May 2009 Sapienza, Università di Roma (Wiesbaden 2010) 91–109

Hamel - Greiff 2014

H. Hamel – S. Greiff, Late Roman and early Byzantine glass from Heliopolis/Baalbek, in: D. Keller – J. Price – C. Jackson (eds.), Neighbours and Successors of Rome. Traditions of glass production and use in Europe and the Middle East in the later 1st millennium AD (Oxford 2014) 147–161

Hanbury-Tenison 1983

J.-W. Hanbury-Tenison, Wādī Arab Survey 1983, ADAJ 28, 1984, 385–424. 494–496

Hanbury-Tenison 1984a

J.-W. Hanbury-Tenison, Exploration du Wādī el-Arab. Chronique archéologique, RB 91, 1984, 230-231

Hanbury-Tenison 1984b

J.-W. Hanbury-Tenison, with contributions by P. M. W. St. Hart – R. K. Falkner, Wādī Arab Survey 1983, AAJ 22, 1984, 385–424. 494–496

Hanbury-Tenison 1987

J.-W. Hanbury-Tenison, Jerash Region Survey 1984, AAJ 31, 1987, 129–159

Hauptmann 1980

A. Hauptmann, Feuerstein, Hornstein, Flint, Chert, Silex – eine Begriffsbestimmung, in: G. Weisgerber – R. Slotta – J. Weiner (eds.), 5000 Jahre Feuersteinbergbau. Die Suche nach dem Stahl der Steinzeit. Veröffentlichungen au dem Deutschen Bergbau-Museum 22, 1980, 7–11

Helms 2017

T. Helms, Steingeräteindustrien im frühurbanen Kontext. Eine wirtschaftsarchäologische Analyse der lithischen Funde aus Tell Chuēra und Kharab Sayyar (Nordsyrien). Vorderasiatische Forschungen der Max Freiherr von Oppenheim-Stiftung, edited by S. M. Maul, Bd. 2, Ausgrabungen in Tell Chuera in Nordost-Syrien Bd. 5 (Wiesbaden 2017)

Hesse 2013

H. Hesse, Metallzeitliche Silexartefakte, in: H. Floss (ed.), Steinartefakte. Vom Altpaläolithikum bis in die Neuzeit ²(Tübingen 2013) 931–942

Hoffmann 1999

A. Hoffmann, Ein hellenistisches Heiligtum in Gadara, Topoi 9, 1999, 795–831

Hoffmann 2002

A. Hoffmann, Topographie und Stadtgeschichte von Gadara/Umm Qais, in: S. Kerner – A. Hoffmann (eds.), Gadara — Gerasa und die Dekapolis (Mainz 2002) 98–124

Homès-Fredericque - Hennessy (eds.) 1989

D. Homès-Fredericq – J. B. Hennessy (eds.), Archaeology of Jordan II/1: Field Reports, Surveys and Sites (A-K) = Akkadica Supplementum 7 (Leuven 1989)

Honroth 2007

M. Honroth, Vom Luxusobjekt zum Gebrauchsgefäß. Vorrömische und römische Gläser. Sammlungen des Landesmuseums Württemberg 3 (Stuttgart 2007)

Hoss 2015

S. Hoss, The Hellenistic, Roman and Byzantine Glass of Tall Zirā'a in the Wādī al-'Arab (Northern Jordan). Luxury objects and everyday wares of a rural settlement in the koine of Gadara. Gadara Region Project Studies II, Wuppertal, Jerusalem and Amman 2015 (unpublished)

Hoss 2020

S. Hoss, The Hellenistic to Umayyad Glass Finds, in: D. Vieweger – J. Häser (eds.), The Gadara Region Project (2001–2011) Final Report Volume 6. Hellenistic to Umayyad Period (Strata 8–3). Ceramic, Glass and Metal Finds (Gütersloh 2020) 227–392

Ibrahim et al. 1976

M. Ibrahim – J. A. Sauer – K. Yassine, The East Jordan Survey, BASOR 222, 1976, 41–66

Isaac 1990

B. Isaac, The Limits of Empire: The Roman Army in the East (Oxford 1990)

Isings 1957

C. Isings, Roman Glass from Dated Finds, Archaeologica Traiectina 2 (Groningen1957)

Israeli 2003

Y. Israeli, Glass in the Roman-Byzantine period, in: Y. Israeli (ed.), Ancient Glass in the Israel Museum. The Eliahu Dobkin Collection and Other Gifts (Jerusalem 2003) 93–316

Jackson-Tal 2007

R. E. Jackson-Tal, Glass Vessels from En-Gedi, in: Y. Hischfeld (ed.), En-Gedi Excavations 2. Final Report (1996-2002) (Jerusalem 2007) 474–506

Jackson-Tal 2012

R. E. Jackson-Tal, The Glass Vessels, in: M. Fischer (ed.), Horvat Mesad – a waystation on the Jaffa-Jerusalem Road, Soina and Marco Nadler Insitute of Archaeology Monograph 30 (Tel Aviv 2012) 177–197

Jackson-Tal 2013a

R. E. Jackson-Tal, The Glass Finds from the Hasmonean and Herodian Palaces at Jericho, in: E. Netzer – R. Bar-Nathan – J. Gärtner (eds.), Hasmonean and Herodian Palaces at Jericho Final Reports of the 1973–1987 Excavations, Volume 5: The Finds from Jericho and Cypros (Jerusalem 2013) 100–129

Jackson-Tal 2013b

R. E. Jackson-Tal, The Glass Finds from the Palatial Fortress at Cypros, in: E. Netzer – R. Bar-Nathan – J. Gärtner (eds.), Hasmonean and Herodian Palaces at Jericho. Final Reports of the 1973–1987 Excavations, Volume 5: The Finds from Jericho and Cypros (Jerusalem 2013) 165–173

Jackson-Tal 2013c

R. E. Jackson-Tal, The Glass and Small Stone Finds from a Roman Tomb at 'Ein el-Sha'ara, Atiqot 73, 2013, 53–65

Jennings 2006

S. Jennings, Vessel Glass from Beirut BEY 006, 007, and 045, Berytus 48/49, 2004/2005

Kamash 2009

Z. Kamash, Water Supply and Management in the Near East 63 BC–AD 636 (PhD Thesis, University of Oxford 2009)

Kamash 2010

Z. Kamash, Archaeologies of Water in the Roman Near East (Piscataway 2010)

Kamlah 2000

J. Kamlah, Der Zeraqōn-Survey 1989–1994 mit Beiträgen zur Methodik und geschichtlichen Auswertung archäologischer Oberflächenuntersuchungen in Palästina, ADPV 27 (Wiesbaden 2000)

Kaptaijn 2009

E. Kaptaijn, Life on the Watershed: Reconstructing Subsistence in a Steppe Region Using Archaeological Survey – A Diachronic Perspective on Habitation in the Jordan Valley (Leiden 2009)

Keel 2010

O. Keel, Corpus der Stempelsiegel-Amulette aus Palästina/Israel. Von den Anfängen bis zur Perserzeit. Katalog Band II: Von Bahn bis Tel Eton (Fribourg/Göttingen 2010)

Keller 2006

D. Keller, Die Gläser aus Petra, in: Petra. Ez Zantur 3: Ergebnisse des Schweizerisch-Liechtensteinischen Ausgrabungen. Part 1. Die Gläser aus Petra, and Part 2. Die Lampen der Grabungen auf ez Zantur in Petra = Terra archaeologica 5 (Mainz 2006) 1–253

Kenkel 2012

F. Kenkel, Untersuchungen zur hellenistischen, römischen und byzantinischen Keramik des Tall Zira'a im Wādī al-'Arab (Nordjordanien). Handelsobjekte und Alltagsgegenstände einer ländlichen Siedlung im Einflussgebiet der Dekapolisstädte (Dissertation Universität zu Köln 2012), <http:// kups.ub.uni-koeln.de/id/eprint/4977> (02.08.2015)

Kenkel 2020

F. Kenkel, The Hellenistic, Roman and Byzantine Pottery, in: D. Vieweger – J. Häser (eds.), Tall Zirā'a. The Gadara Region Project (2001–2011) 6 Hellenistic to Umayyad Period (Norderstedt 2020) 15–225

Kennedy 1981

D. L. Kennedy, Preliminary Report of a Survey of Roman Military Installation in North-Eastern Jordan, AAJ 25, 1981, 21–24

Kennedy 2004

D. L. Kennedy, The Roman Army in Jordan, 2 (London 2004)

Kennedy - Cowie 1984

D. L. Kennedy – R. Cowie, Archaeological Explorations on the Roman Frontier in North-East Jordan. Some Further Notes, AAJ 28, 1984, 321–332

Kennedy et al. 1986

D. L. Kennedy – H. I. MacAdam – D. N. Riley, Preliminary Report on the Southern Hauran Survey 1985, AAJ 30, 1986, 145–153

Kennedy 1997

D. L. Kennedy, Roman Roads and Routes in North-East Jordan, Levant 29, 1997, 71–93

Kerestes et al. 1978

T. M. Kerestes – J. M. Lundquist – B. G. Wood – K. Yassine, An Archaeological Survey of the Reservoir Areas in Northern Jordan, 1978, AAJ 22, 1978, 108–135

Kerner 2002

S. Kerner, Gadara — Schwarzweiße Stadt zwischen Adjlun und Golan, in: S. Kerner – A. Hoff-

mann (eds.), Gadara — Gerasa und die Dekapolis (Mainz 2002) 125–136

Kerner et al. 1997

S. Kerner – H. Krebs – D. Michaelis 1997, Water Management in Northern Jordan: The Example of Gadara Umm Qays, in: Gh. Bisheh – M. Zaghloul – I. Kehrberg (eds.), SHAJ 6 (Amman 1997) 265–270

Khasawneh 1994

N. Khasawneh, Final Report on the Khirbet al-Burz, Sama ar-Rusan Excavation 1993, AAJ 38, 1994, 21–29 (arabische Abteilung)

King 1980

G. R. D. King, Survey of Byzantine and Islamic Sites in Jordan, LA 30, 198, 353–354

King 1982

G. D. R. King, Survey of Byzantine and Islamic Sites in Jordan, AAJ 26, 1982, 85–95

King 1983a

G. D. R. King, Two Byzantine Churches in Northern Jordan and their Re-Use in the Islamic Period, DaM 1, 1983, 111–136

King 1983b

G. D. R. King, Byzantine and Islamic Sites in Northern and Eastern Jordan, PSAS 13, 1983, 79– 91

King 1989

G. R. D. King, Sama, in: D. Homès-Fredericq – B. Hennessy (eds.), Archaeology of Jordan 2 (Leiden 1989) 552–554

Kraeling 1938

C. H. Kraeling, Gerasa – City of the Decapolis (New Haven 1938)

Krause 2013

J.-U. Krause, Die Spätantike, in: H.-J. Gehrke – H. Schneider (eds.), Geschichte der Antike 4 (Stuttgart 2013) 429–499

Kraushaar et al. 2015

S. Kraushaar – G. Ollesch – C. Siebert – H.-J. Vogel – M. Fuchs, Long-term Sediment Export Estimates from Northern Jordan using Roman Cisterns as Sediment Traps, Geoarchaeology 30, 2015, 369–378

Kraushaar 2016

S. Kraushaar, Soil Erosion and Settlement Flux in Northern Jordan (Switzerland 2016) 13–32

Kuhnen 1990

H.-P. Kuhnen, Palästina in griechisch-römischer Zeit (München 1990)

Lamprichs 2007

R. Lamprichs, Tell Johfiyeh. Ein archäologischer Fundplatz und seine Umgebung in Nordjordanien. Materialien zu einer Regionalstudie (Münster 2007)

Lamprichs 2009

R. Lamprichs, A Period of Peace and Prosperity in Gilead. Tall Juhfiyya and its Surrounding During the (late) Iron Age. A Report on the 2002–2004 and 2007 Seasons, in: F. al-Kraysleh (ed.), SHAJ 10 (Amman 2009) 193–204

Leith 1997

M. J. W. Leith, Wadi Daliyeh I. The Wadi Daliyeh Seal Impressions (Oxford 1997)

Leith 2000

M. J. W. Leith, Seals and Coins in Persian Period Samaria, in: L. H. Schiffmann – E. Tov – J. C. Vanderkam (eds.), The Dead Sea-Scrolls Fifty Years after Their Discovery. Proceedings of the Jerusalem Congress, July 22–25, 1997 (Jerusalem 2000) 691-707

Leiverkus - Soennecken 2016

P. Leiverkus – K. Soennecken, Survey in the Wādī al-Arab 2009 – 2011, in: M. Jamhawi (ed.) SHAJ 12 (Amman 2016) 509–518

Lenzen 1986

C. J. Lenzen, Tall Irbid and Beit Ras, Archiv für Orientforschung 33, 1986, 164–166

Lenzen 1990

C. J. Lenzen, Beit Ras Excavations 1988 and 1989, Syria 67, 1990, 474–476

Lenzen 1992

C. J. Lenzen, Irbid and Beit Ras. Interconnected Settlements c. A.D. 100–900, in: M. Zaghloul – K. 'Amr – F. Zayadine – N. R. Tawfiq (eds.), SHAJ 4 (Amman 1992) 299–301

Lenzen 1995

C. J. Lenzen, From Public to Private Space: Changes in the Urban Plan of Bayt Rās, in: K. 'Amr – F. Zayadine – M. Zaghloul (eds.), SHAJ 5 (Amman 1995) 235–239

Lenzen 1997

C. J. Lenzen, Beit Ras, in: E. M. Meyers (ed.), The Oxford Encyclopedia of Archaeology in the Near East 1 (Oxford 1997) 297–298

Lenzen et al. 1985

C. J. Lenzen – R. Gordon – A. McQuitty, Excavation at Tell Irbid and Beit Ras 1985, AAJ 29, 1985, 151–159 Pl. 21–24

Lenzen – Knauf 1987

C. J. Lenzen – E. A. Knauf, Beit Ras/Capitolias. A Preliminary Evaluation of the Archaeological and Textual Evidence, Syria 64, 1987, 21–46

Lenzen – McQuitty 1983

C. J. Lenzen – A. McQuitty, A Preliminary Survey of the Irbid-Beit Ras Region, North-West Jordan, AAJ 27, 1983, 656

Lenzen – McQuitty 1985

C. J. Lenzen – A. McQuitty, Rousan, Khirbet el-Burz, AAJ 29, 1985, 175–178

Lenzen - McQuitty 1988

C. J. Lenzen – A. McQuitty, The 1984 Survey of the Irbid / Beit Ras Region', AAJ 32, 1988, 265–274

Lenzen – McQuitty 1989

C. J. Lenzen - A. McQuitty, Burz (Khirbet el),

in: D. Homès-Fredericq – B. Hennessy (eds.), Archaeology of Jordan 2 (Leiden 1989) 196–197

Lichtenberger 2003

A. Lichtenberger, Kulte und Kultur der Dekapolis: Untersuchungen zu numismatischen, archäologischen und epigraphischen Zeugnissen = ADPV 29 (Wiesbaden 2003)

Lucke 2007

B. Lucke, Demise of the Decapolis. Past and Present Desertification in the Context of Soil Development, Land Use and Climate (Diss. BTU Cottbus 2007) <http://nbn-resolving.de/rrn:nbn:de:kobv:colopus-3431> (10.03.2013) Lucke 2008a

B. Lucke, Demise of the Decapolis (Saarbrücken 2008)

Lucke 2008b

B. Lucke, Wasser oder Boden – welches war der Schlüssel für die Blüte der Dekapolis-Region?, in: C. Ohlig (ed.), Cura Aquarum in Jordanien. Beiträge des 13. Internationalen Symposiums zur Geschichte der Wasserwirtschaft und des Wasserbaus im Mediterranen Raum Petra / Amman 31. März – 09. April 2007 = Schriften der Deutschen Wasserhistorischen Gesellschaft 12 (Norderstedt 2008)

Lucke et al. 2012

B. Lucke – M. Shunnaq – B. Walker – A. Shiyab – Z. al-Muheisin – H. al-Sababha – R. Bäumler – M. Schmidt, Questioning Transjordan's Historic Desertification: A Critical Review of the Paradigm of "Empty Lands", Levant 44, 2012, 101–126

Mabry - Palumbo 1988

J. Mabry – G. Palumbo, The 1987 Wādī el-Yabis Survey, AAJ 32, 1988, 275–305

McQuitty 1995

A. McQuitty, Watermills in Jordan: technology, typology, dating and development, in: K. Amr – F. Zayadine – M. Zaghloul (eds.), SHAJ 5 (Amman 1995) 745–751

McQuitty 2004

A. McQuitty, Harnessing the Power of Water: Wa-

termills in Jordan, in: H.-D. Bienert – J. Häser, "Men of Dikes and Canals": The Archaeology of Water in the Middle East = OrA 13 (Rahden/Westf. 2004) 261–272

Melhem - Khasawneh 1994

I. Melhem – N. Khasawneh, The Excavation of the al-Husn / Khirbat al-Jiddah Church, AAJ 38, 1994, 31–38 (arabische Abteilung)

Mellaart 1962

J. Mellaart, Preliminary Report of the Archaeological Survey in the Yarmouk and Jordan Valley for the Point Four Irrigation Scheme, AAJ 6/7, 1962, 126–157

Mitchell - Searight 2008

T. C. Mitchell – A. Searight, Catalogue of the Western Asiatic Seals in the British Museum, Stamp Seals 3 (Leiden 2008)

Mittmann 1966

S. Mittmann, The Roman Road from Gerasa to Adraa, AAJ 11, 1966, 65–87

Mittmann 1970

S. Mittmann, Beiträge zur Siedlungs- und Territorialgeschichte des nördlichen Ostjordanlandes = ADPV 2 (Wiesbaden 1970)

Muheisen et al. 2004

M. Muheisen – N. Qadi – H. G. K. Gebel, Raw Materials of the Flint and Ground Stone Industries, in: H. J. Nissen – M. Muheisen – H. G. K. Gebel (eds.), Basta I, The Human Ecology = Bibliotheca Neolithics Asiae Meridionalis et Accidentalis (Berlin 2004) 129–154

Nishiaki 2000

Y. Nishiaki, Lithic Technology of Neolithic Syria, British Archaeological Reports. International Series 840 (Oxford 2000)

Nishiaki 2001

Y. Nishiaki, Hafting systems of sickle elements from the Chalcolithic levels of Telul eth-Thalathat II, Iraq, in: I. Caneva – C. Lemorini – D. Zampetti – P. Biagi (eds.), Beyond Tools. Redefining the PPN Lithic Assamblages of the Levant. Proceedings of the Third Workshop on PPN Chipped Lithic Industries, Department of Classical and Near Eastern Studies Ca' Foscari University of Venice 1st - 4th November, 1998 = SENNEPSE 9 (Berlin 2001) 55–72

Odell 2004

G. H. Odell, Lithic Analysis. Manuals in Archaeological Method, Theory and Technique (New York 2004)

O'Hea 2005

M. O'Hea, Late Hellenistic glass from some military and civilian sites in the Levant: Jebel Khalid, Pella and Jerusalem, in: Annales du 16e congrès de la Association Internationale pour l'histoire du verre (London 2005) 44–48

O'Hea 2012

O'Hea, The glass, in: K. D. Politis (ed.), Sanctuary of Lot at Deir 'Ain 'Abata in Jordan, Excavations 1988–2003 (Amman 2005) 293–316

Palumbo 1994

Palumbo, G. (ed.), Jordan Antiquities Database & Information System (JADIS). A Summary of the Data, Amman 1994

Riedl 1998

N. Riedl, Umm Qais Survey 1998. Land Use on the Ard al-Ala, Occident & Orient 3, 1998, 23–24

Riedl 1999

N. Riedl, Umm Qais, Hinterland Survey, AJA 103, 1999, 485. 487

Riedl 2005

N. Riedl, Gottheiten und Kulte in der Dekapolis http://www.diss.fu-berlin.de/2005/155 (29.07.2015)

Robinson - Smith 1842

E. Robinson – E. Smith, Palästina und die südlich angrenzenden Länder 3 (Halle 1842)

Rokitta-Krumnow 2010

D. Rokitta-Krumnow, Lithikfunde des 7. Jahrtau-

sends v. Chr. in der nördlichen Levante. Die Entwicklung der Steingeräteindustrie der spätneolithischen Siedlung Shir/Syrien (Dissertation Freie Universität Berlin 2010)

Rosen 1996

S. A. Rosen, The Decline and Fall of Flint, in: Stone Tools. Theoretical Insighs into Human Prehistory, in: G. H. Odell (ed.), Lithic Analysis Manuals in Archaeological Method, Theory and Technique (New York 1996)

Rosen 1997

S. A. Rosen, Lithics after the Stone Age. A Handbook of Stone Tools from the Levant (Berkeley 1997)

Rosen 2013

S. A. Rosen, Arrowheads, Axes, Ad Hoc, and Sickles: An Introduction to Aspects of Lithic Variability Across the Near East in the Bronze and Iron Ages, in: Lithic Technology 38, 2013, 141–149

Rütti 1991

B. Rütti, Die römischen Gläser aus Augst und Kaiseraugst. Forschungen in Augst 13 (Augst 1991)

Schröder forthcoming

B. Schröder, Die Entwicklung von Steingeräten in Nordpalästina seit den Metallzeiten anhand des Fundmaterials vom Tall Zirā'a (working title) (forthcoming)

Schumacher 1890

G. Schumacher, Northern 'Ajlūn 'within the Decapolis' (London 1890)

Schumacher 1893

G. Schumacher, Ergebnisse meiner Reise durch Haurān, 'Adschlūn und Belkā', ZDPV 16, 1893, 72–83. 153–170

Schroer - Lippke 2014

S. Schroer – F. Lippke, Beobachtungen zu den (spät-)persischen Samaria-Bullen aus dem Wādī ed-Daliyeh: Hellenisches, Persisches und Lokaltraditionen im Grenzgebiet der Provinz Yehûd, in: C. Frevel – K. Pyschny – I. Cornelius (eds.), A "Religious Revolution" in Yehûd? The Material Culture of the Persian Period as a Test Case (Fribourg 2014) 305–390

Schwermer 2014

A. Schwermer, Die Kochtopfkeramik des Tall Zirā'a. Eine typologische und funktionale Analyse der Funde von der Frühen Bronzezeit bis in die späte Eisenzeit (Dissertation Bergische Universität Wuppertal) http://elpub.bib.uni-wuppertal.de/edoes/dokumente/fba/geschichte/ diss2014/ schwermer> (20.9.2020)

Seetzen 2004

U. J. Seetzen, Ulrich Jasper Seetzen's Reisen durch Syrien, Palästina, Phoenicien, die Transjordan-Länder, Arabia Petraea und Unter-Aegypten 1 (Berlin 1854; Nachdr. Hildesheim 2004)

Simmons 1959

J. Simmons, The Geographical and Topographical Texts of the Old Testament (Leiden 1959)

Soennecken 2017

K. A. Soennecken, Kulturelle Umbrüche in der südlichen Levante. Der Übergang von der Bronzezur Eisenzeit unter besonderer Berücksichtigung des Tall Zirā'a (Dissertation Bergische Universität Wuppertal 2017) <http://elpub.bib.uni-wuppertal. de/servlets/documentServlet?id=7401 (30.8.2020)

Soennecken et al. 2017

K. Soennecken – L. Olsvig-Whittaker – P. Leiverkus – A. Shmida, Landscape Archaeology in the Wādī al-'Arab Region, in: Journal of Landscape Ecology 10, 3, 2017, 100–108

Spaer 1988

M. Spaer, The pre-Islamic Glass bracelets of Palestine, Journal of Glass Studies 30 (1988) 51–61

Squitieri 2017

A. Squitieri, Stone Vessels in the Near East During the Iron Age and the Persian Period (c. 1200–330 BCE) (Oxford 2017)

Stern-Schlick-Nolte 1994

E. M. Stern - B. Schlick-Nolte, Early Glass of the

Ancient World, 1600 B.C.–A.D. 50. Ernesto Wolf Collection (Ostfildern 1994)

Steuernagel 1924

C. Steuernagel, Der 'Adschlūn, ZDPV 47, 1924, 191=A.191-240=A.148

Steuernagel 1925a

C. Steuernagel, Der 'Adschlūn, ZDPV 48, 1925, 1=A.49-144=A.192

Steuernagel 1925b

C. Steuernagel, Der 'Adschlūn, ZDPV 48, 1925, 201=A.193-392=A.384

Steuernagel 1926

C. Steuernagel, Der 'Adschlūn, ZDPV 49, 1926, 1=A.385 – 167=A.551

Tarawneh 1990

F. Tarawneh, Qam Salvage Excavation, Newsletter of the Institute of Archaeology and Anthropology Yarmouk University Irbid-Jordan 9, 1990, 12. 19– 20 (arabische Abteilung)

Vieweger 2012

D. Vieweger, Archäologie der Biblischen Welt (Gütersloh 2012)

Vieweger – Häser 2013

D. Vieweger – J. Häser unter Mitarbeit von S. Schütz, Der Tall Zirā'a. Fünf Jahrtausende Geschichte in einem Siedlungshügel (Berlin 2013)

Vieweger - Häser 2015

D. Vieweger – J. Häser with S. Schütz, Tall Zirā'a – Five Thousand Years of History in One Settlement Mound (Amman/Jerusalem 2015)

Vieweger - Häser 2017

D. Vieweger – J. Häser (eds.), Tall Zirā'a. Gadara-Region Project 2001–2011. Final Report 1. Introduction (Norderstedt 2017)

Wagner-Lux 1986

U. Wagner-Lux, Ein bemaltes Grab in Som, Jorda-

nien, in: L. Geraty – L. Herr, The Archaeology of Jordan and other Studies (Michigan 1986) 287–300

Waitzbauer - Petutschnig 2004

W. Waitzbauer – B. Petutschnig, Zur Geologie Jordaniens, Denisia 0014 (2004), 89–112

Walmsley 1996

Walmsley, Byzantine Palestine and Arabia: Urban Prosperity in Late Antiquity, in: N. Christie – S. T. Loseby (eds.), Towns in Transition. Urban Evolution in Late Antiquity and the Middle Ages (Aldershot 1996) 126–158

Watson 2001

P. M. Watson, The Byzantine Period, in: B. Macdonald – R. B. Adams – P. Bienkowski (eds.), The Archaeology of Jordan (Sheffield 2001) 461–502

Watson 2008

P. M. Watson, The Byzantine Period, in: R. B. Adams (ed.), Jordan. An Archaeological Reader (London 2008) 443–482

Watson – O'Hea 1996

P. M. Watson – M. O'Hea, The Pella Hinterland Survey 1994: A Preliminary Report, Levant 28, 1996, 63–76 Weber 1998

Th. M. Weber, Gadara 1998: the Excavation of the Five-aisled Basilica at Umm Quais. Preliminary Report, AAJ 42, 443–456

Weber 2002

Th. M. Weber, Gadara – Umm Qēs I – Gadara Decapolitana. Untersuchungen zur Topographie, Geschichte, Architektur und der Bildenden Kunst einer "Polis Hellenis" im Ostjordanland' = ADPV 30 (Wiesbaden 2002)

Weiner 1999

J. Weiner, Vom Rohmaterial zum Gerät – Zur Technik der Feuersteinbearbeitung, in: G. Weisgerber – R. Slotta – J. Weiner (eds.), 5000 Jahre Feuersteinbergbau. Die Suche nach dem Stahl der Steinzeit (Bochum 1999) 216–227

Wenning 1994

R. Wenning, Die Dekapolis und die Nabatäer, ZDPV 110, 1994, 1–35

Zwickel 1990

W. Zwickel, Eisenzeitliche Ortslagen im Ostjordanland (Wiesbaden 1990)

2. Related Research Projects in the Wādī Al-'Arab

2.1. Landscape Archaeology

2.1.1. Landscape Archaeology in the Wādī al-'Arab Region

by Linda Olsvig-Whittaker/Patrick Leiverkus

Archaeological sites are located within a landscape, the surrounding physical, cultural and biological environment which provides the context, driving factors and the system in which an ancient settlement functioned. The study of the archaeology of such environments, called landscape archaeology, attempts to describe and understand spatial and functional relationships of features such as settlements, roads, installations, fields, etc. with their physical, ecological and cultural environment. Important questions of this research discipline are, for example: What is the importance of water in determining site locations? How does political change drive the location of roads and sites? What are the patterns of land use by settlements?

The northern slopes of the wādī directly upwards from Tall Zirā'a are characterized by a dense occurrence of water sources. Many of the sites found there relate to them. This can shed further light on the Roman water management in the region.

On the basis of this survey we used ecological approaches to see what correlation might exist between archaeological sites and habitat. Since more than half the sites in this survey had Roman occupation, we asked what difference, if any, was there in the distribution of Roman sites compared to previous occupations. A comparison was made of "new" Roman sites (those not previously occupied in the Hellenistic period) with those that had both Roman and Hellenistic occupation. Clearly there could have been other definitions such as "never previously occupied". Hence this analysis is preliminary.

As groundwork for further investigations, the boundaries of the survey area and the sites were mapped by their centroid coordinates on QGIS, superimposed on a Google satellite image. Polygons were drawn by hand at the 1:10,000 level (at times reduced to 1:5,000 when clarity was needed). The landscape observed by satellite was relatively simple and can be defined into crude categories. Originally the entire area was to be mapped to habitat, but this proved very time consuming. Instead, the area at 0.5 km radius around each site was mapped by eye as orchard, maquis, steppe, urban, riverine, field, bare, water, archaeological site, and development (not urban, can include military bases, water installations, etc.). Ground verification still needs to be done for the habitats mapped from satellite images. Hence these categories were preliminary. The immediate next steps will be to develop automated mapping on GIS of the habitats for the entire area, based on algorithms derived from the habitat polygons drawn by eye. This will make possible the analysis of all sites much more rapidly and with different scales of relation to environment.

For the multivariate analysis, categorical data were used as dummy variables. The habitat mapping provided the environmental matrix data as the percentage of the area around each site in each habitat category. The response "species" variables were of two types: epoch classification and size categories.

Epochs were used as provided from the survey database, but broader groupings were made as follows: Neolithic and Chalcolithic; Bronze Age; Iron Age; Hellenistic; Roman; Byzantine; Islamic; "undetermined" and "modern" not into a group. Three very coarse size categories are used in the analysis:

- 1. a few meters in area
- 2. a dunum in area or less, or
- 3. several dunums in area.

Multivariate analysis—indirect ordination and direct ordination—using Canoco 5¹ was selected as the analytical tool for assessing patterns and correlations in site attribute and habitat attribute data.

¹ Šmilauer – Lepš 2014.

While ordination has long been in use in community ecology, its application to archaeological data is somewhat more recent.

There is a vast literature on the subject of ordination and many algorithms to do it. In general, ordination methods help to find structure in complex matrix data sets, i.e. site by attribute or habitat by attribute tables. In the case of direct ordination, this is a regression of the site data versus the habitat data, conceptually similar to multiple regressions.

Direct ordination can be used either heuristically or as a statistical test of correlation with measured driving factors, using Monte Carlo simulations. When a heuristic search for pattern is desired, indirect ordination is the proper tool. Most algorithms for indirect ordination calculate similarity/dissimilarity between habitats (or sites) and their attributes, from a single table. Results are projected onto two dimensions in such a way that similar habitats (or sites) and most closely correlated attributes are plotted close together, and dissimilar habitats (or sites) and their attributes are placed far apart. Most importantly, in both direct and indirect ordinations, the scatter plots for habitat and site values can be superimposed. In this way the habitats driving the pattern in sites can be seen, and vice versa.

Detrended Correspondence Analysis (DCA) was used on the habitat matrix, with site data carried passively, to determine major trends in variation of habitat distribution and the response of site factors to them. DCA is an indirect ordination method using only one matrix. It is an analytical approach in its own right, and is also is a necessary first step in every CANOCO analysis, regardless of algorithm. The first information obtained in DCA is the habitat turnover along the first gradient (Axis 1, horizontal), which is either short (less than 4 standard deviation units in habitat composition), in which case a linear model such as PCA or RDA can be used in subsequent steps. If the gradient is longer than four standard deviation units, a unimodal model such as DCA, or Canonical Correspondence Analysis (CCA) is used in subsequent steps².

Canonical Correspondence Analysis (CCA) is a direct ordination method which correlates two matrices using eigenvector methods. In this study we used habitat as the 'species' matrix and the two factors of sites (size and age) as the environmental matrix factors. Monte Carlo tests can be run to determine the significance of the correlation of habitat with site factors³.

The ordinations, despite the lack of statistical significance of correlations, suggested interesting relationships. Open water, riverine habitats, and large archaeological sites all seemed connected. In addition, analysis indicated a correlation of older (more successful or established?) sites with open water. Analysis also suggested that new Roman sites were less related to water. We knew that Roman engineering both of cistern systems and aqueducts opened new areas (such as plateaus) for settlement and exploitation. Hence the weaker correlation of new Roman sites with water also made sense.

The results of this study are presented in detail in the following chapter.

2.1.2. Roman Settlements and Single Complexes in Relation to Habitat in the Wādī al-'Arab region

2.1.2.1. Introduction

The Wādī al-'Arab area in northern Jordan (map, $Fig \ 2.1$) is an area rich in historical and prehistorical settlement. The sites that were found in our study area range from the lithic epochs (until 3600 BC) to Ottoman era (ending 1918, at least 5500 years). The central site, Tall Zirā'a, has a 5000 years occupation history. In Hellenistic times the city of

Gadara developed as part of the Decapolis. There was some caravan trade using routes from Damascus across the lower Galilee to the Mediterranean, but most people lived by subsistence agriculture⁴. This changed when the Romans annexed Nabataea in 106 creating the province Arabia Petraea and gradually shifting the agriculture to industrial production of wine⁵.

- 4 El-Khouri 2008, 71.
- 5 Tracy 1994, 225.

² Šmilauer – Lepš 2014.

³ Šmilauer – Lepš 2014.

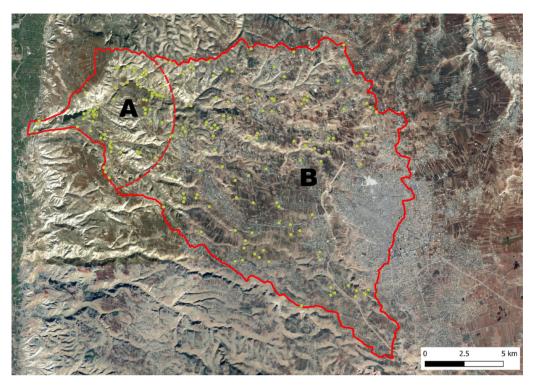


Fig. 2.1 Map of the study area with sites. Area A was completely mapped both for sites and for habitat. Area B was checked using historical records of sites, and mapped for habitat at ½ km radius from each site (© BAI/ GPIA).

This was a typical Levantine landscape on the edge of the Jordan Valley. River and stream valleys were rich in plant species and there were many springs. Away from the valleys, the landscape was a mixture of shrubland and oak woodland⁶. Pre-Roman settlements were mostly close to natural water sources and the waterless upland plateaus were largely unused except for pastoralists. Some settlements were abandoned from the 3rd century BC until the Romans and Byzantine eras, as indicated in the survey⁷.

Formulation of Questions

Working from the project database built for the Wādī al-'Arab surveys of 2009-2011, it was evident that the Roman eras introduced many changes in land use. The surveys covered some 400 square kilometers, which gave the opportunity to study these changes as reflected in the distribution of sites in the landscape.

One interesting phenomenon was the increase in the number of new sites from Hellenistic – Early Roman (167 BC to 132 AD) to Late Roman – Byzantine (132 AD to 638 AD)—with a threefold jump in new agricultural complexes (farms). It is known that the Roman conquest of this area resulted in an improvement in water supply by construction of aqueducts and cisterns. It seems this opened a new range of opportunities for settlement. The question is what patterns of correlation between environmental and manmade factors and sites exist which cause site selections for new settlements and agricultural complexes.

2.1.2.2. Methods

Site Data

The archaeological and geographical data in this study were provided by the database created from

the archaeological survey of Wādī al-'Arab previously described in Volume 1 of this series⁸.

Of the 206 known sites in the survey, 94 sites were hamlets, villages or larger settlements during the Roman/Byzantine period. The focus was on these. Those sites which had previous (Hellenistic – Early Roman) occupancy continuing into Roman – Byzantine occupancy (old sites) were compared to those sites which were new in the Roman/Byzantine period. There was a major development of "single complexes" (farm or hamlet) sites from 17 "old" sites versus 54 "new" sites. In contrast there were 14 "old" settlements, and 9 "new" settlements. It seems the expansion in the late Roman/Byzantine state was mainly in new farming estates.

Habitat Data

The following methodology on habitat analysis has been previously described in preliminary studies⁹. To summarize: habitat was mapped visually using Google Earth landsat images within the QGIS viewing software. Hence 'habitat' as provided from Landsat is not quite habitat as would be classified on the ground. Mainly it was possible to distinguish the following categories:

- Steppe areas devoid of woody vegetation as seen from Landsat images.
- Maquis shrub lands or areas of isolated woody plants and herbaceous vegetation.
- Woodland initially marked as maquis, this type was first identified in the ground verification and then was corrected in GIS polygons, since woodlands could be distinguished.
- Riverine a diverse mixture of usually lush vegetation often fed by raw sewage, very nitophilous.
- Open water reservoirs, ponds.
- Orchard almost all olive groves, very abundant and planted on all kinds of terrain. For this reason we did not think the pattern of orchard distribution would be informative about ecological relationships.
- Field sometimes not distinct from bare

8 Leiverkus – Soennecken 2017, 198–201.

ground, mainly identified by rectangular configuration.

- Bare ground sometimes not distinct from fields, mainly identified by irregular configuration.
- Urban ranges from city (Irbid) to suburban development and large single complexes. Complicated by the fact that in Jordan the fields and orchards are intermingled into urban areas, with a few orchards around every house. This made mapping difficult. In effect, if houses were more than 25 % of the area, it was mapped as urban.

Habitats in Zone A, the area around the main study side Tall Zira'a, were mapped over the entire area. This proved impractical to map by hand around the whole survey area so buffer zones of ¹/₂ km² were mapped around sites in Area B (map). These "habitat types" were mapped at the 1:10,000 level and in some case where more detail was needed, at the 1:5,000 or even the 1:2,500 level, and polygons drawn around them. Mapping was done by hand in QGIS.

Samples of such polygons were verified by ground verification in June 2017 by geobotanist Prof. A. Shmida.

Data on Cisterns

Information on cistern location and dating was obtained from the survey database, from field observations by P. Leiverkus and K. Soennecken (2017). Some of them were still in use and it was not possible to date them except by typology. The ones out of use and with pottery in them could be dated to Roman and Late Roman period. A total of 35 cisterns were found.

Data on Topography

Two calculations were made on elevation, using PostGIS from maps. Average altitude for each site was obtained, and total length of topographic lines within a stated buffer zone (500 m, 1,000 m). The latter attributes were used in this study.

⁹ Olsvig-Whittaker 2017; Soennecken et al. 2017.

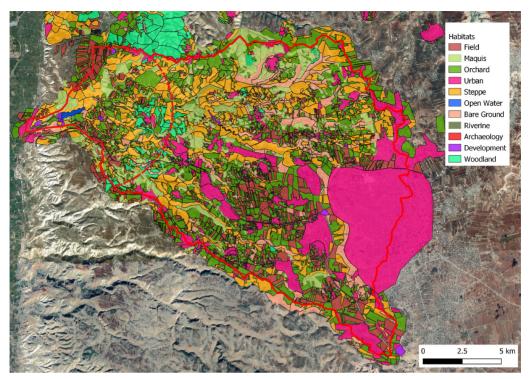


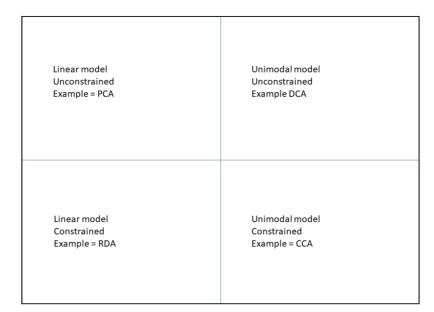
Fig. 2.2 Habitat mapping of the study area done by hand on QGIS (© BAI/GPIA).

Data on Distance to Water

Distance to the nearest major water sources was estimated by measuring the distance from each site to the nearest stream, using PostGIS.

Analytical Approaches

As a first step, it was asked which site types correlate with which explanatory variables. Since there are multiple response variables (four site types of interest) the appropriate analytical approaches are inherently multivariate. Multivariate analysisindirect ordination and direct ordination—using Canoco 5¹⁰ was selected as the tool for assessing patterns. While ordination has long been in use in other disciplines such as community ecology, its application to archaeological data is somewhat more recent¹¹. There is a vast literature on the subject of ordination and many algorithms to do it¹². In general, ordination methods help to find structure in complex community data sets, i.e. the predominant patterns in the response matrix.


The multivariate analysis software Canoco provides both linear and unimodal analytical models, and both constrained and unconstrained analyses. The choice of appropriate method looks like this:

10 Šmilauer – Lepš 2014.

2017; Soennecken et al. 2017.

11 But see Olsvig-Whittaker et al. 2015; Olsvig-Whittaker

12 See Jongman et al. 1995 for a review.

Graph 2.1 Multivariate algorithm options available in Canoco.

In the case of constrained ordination, this is basically a regression of the dependent variables versus the explanatory (driving) variables, conceptually similar to a stepwise multiple regression. Constrained ordination can be used either heuristically or as a statistical test of correlation with measured driving factors, using Monte Carlo simulations.

When explanatory data are unavailable, unconstrained ordination is used. Most algorithms for unconstrained ordination calculate similarity/ dissimilarity between response and sites. Results are projected onto two dimensions in such a way that similar response and sites are plotted close together, and dissimilar response and sites are placed far apart¹³. In the case of indirect ordination, interpretation depends on expert knowledge of response variable distribution.

Canoco does some preliminary testing to determine whether linear or unimodal models are more appropriate, and we mostly were able to use unimodal models. After some patterns were discerned we checked them by looking at the distribution of parameter frequency or averages among the four site types.

Simple tabulation and graphing were also used to explore patterns of settlement versus elevation, cistern distribution etc. but the samples were too small to test statistically. Therefore, the patterns studied in this way remain only suggestive.

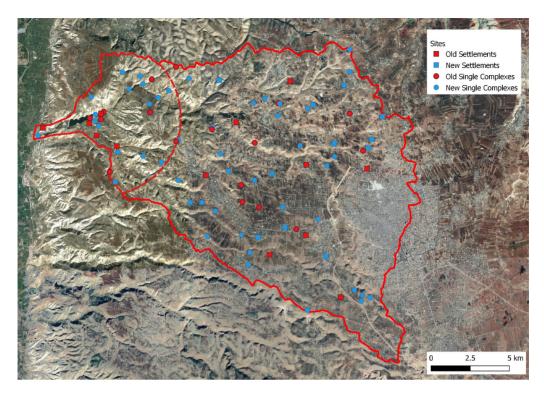
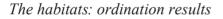
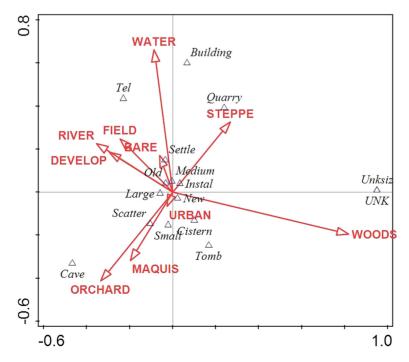
2.1.2.3. Results

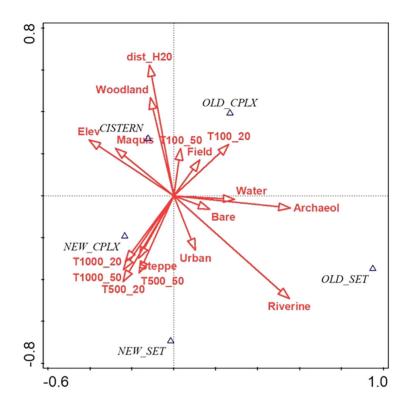
The sites of interest are 94 settlements or complexes (single complexes or hamlets) occupied in the late Roman/Byzantine epochs. Some were previously occupied in the Hellenistic – Early Roman period (called "old"), and some were not (called "new"). The breakdown looks like this (*Tab. 2.1*):

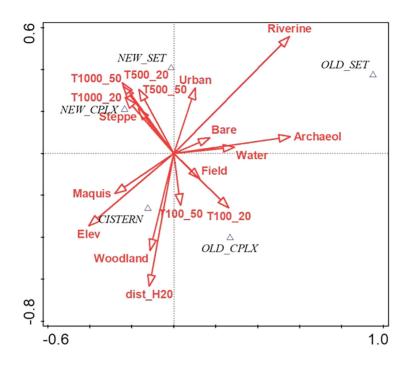
Site type	total
new settlement	9
old settlement	14
new complex	54
old complex	17

Tab. 2.1 Numbers for the site types in Late Roman – Byzantine period.

New settlements and new complexes are not previously occupied in Hellenistic/Early Roman period; while old settlements and old complexes were occupied in both Hellenistic/Early Roman and Late Roman/Byzantine periods. Spatial distribution looks like this (*Fig. 2.3*):


Fig. 2.3 Settlements and single complexes in the study area. Clearly there are many more new complex sites than old complex sites. Distribution tends to follow streams (© BAI/GPIA).



Graph 2.2 CCA results on natural habitat using all available habitat data.

But orchard, urban, development are not useful habitat types over long period of time (millennia). Since the focus is on Roman sites, the habitat factors have been limited to those which should have been con-stant between the present and the Roman era, so CCA was run again, this time removing ephemeral habitat types (*Graph 2.3*).

Graph 2.3 CCA ordination using more permanent habitat types as environmental variables and new and old settlements and single complexes as response variables.
 The total variation in the data is 3.07210, explanatory variables account for 40.9 % Monte Carlo Permutation Test results on all axes: pseudo-F=1.2, P=0.238.

Graph 2.4 The same dataset, but using forward selection in CCA ordination to identify the variation explained by each environmental factor. Total variation is 3.07210, explanatory variables account for 35.2 %.

Name	Explains %	Contribution %	pseudo-F	Р
Riverine	9.5	26.9	4.7	0.008**
Archaeology	3.3	9.5	1.7	0.152
dist_H20	4.1	11.6	2.1	0.112
T100_20	2.8	8.0	1.5	0.194
T1000_50	2.5	7.2	1.3	0.254
water	2.0	5.7	1.1	0.244
elev	3.3	9.3	1.8	0.15
T1000_20	1.8	5.1	1.0	0.382
T100_50	1.1	3.2	0.6	0.578
Bare	1.1	3.1	0.6	0.582
Woodland	0.9	2.6	0.5	0.634
Urban	0.8	2.1	0.4	0.786
T500_50	0.7	2.0	0.3	0.772
Maquis	0.4	1.2	0.2	0.902
Field	0.4	1.1	0.2	0.918
Steppe	0.3	0.8	0.1	0.96
T500_20	0.2	0.6	<0.1	0.984

Tab. 2.2 Forward selection results.

Interpretation: Riverine habitat has a significant correlation with the pattern of sites. Riverine, open water, archaeological sites, and modern urban areas are associated with old settlements (occupied prior to Roman conquest). Topographic heterogeneity and arid locations are associated with new settlements and new single complexes (created during the Roman – Byzantine period).

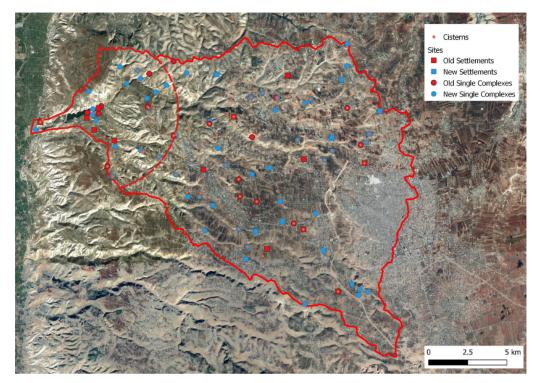


Fig. 2.4 Cisterns in relation to the categorized sites (© BAI/GPIA).

Riverine habitat

Values were calculated for riverine habitat association with the four major site types, expressed as an average percentage of the area within $\frac{1}{2}$ km².

0.05	new settlement		
2.84	old settlement		
0.99	new complex		
0.59	old complex		

Tab. 2.3 Riverine habitat.

Site type	total	cisterns	percent
new settlement	9	3	0.33
old settlement	14	4	0.29
new complex	54	17	0.31
old complex	17	8	0.47

Tab. 2.4 Absolute and percentage of site types with cisterns.

Old single complexes had more cisterns per site, even though overall there were more cisterns in new single complexes. There just were more new single complexes.

Topography

Topography was calculated using PostGIS from maps. Two attributes were examined: average altitude, and total length of topographic lines within a stated buffer zone (500 m, 1,000 m).

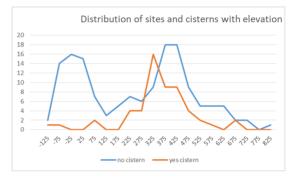
For all measures which have complete data, new single complexes have the greatest topographic heterogeneity, suggesting new single complexes had to be constructed in the less desirable, hilly terrain—or new technology and infrastructure made these areas more desirable than before (perhaps for olive groves and viniculture?) In contrast, new settlements were on the flattest ground.

Site type	T1000_20	T1000_50	T500_20
new settle- ment	19,267	7,833	4,698
old settle- ment	27,517	11,105	6,104
new com- plex	28,923	11,538	7,263
old com- plex	26,257	10,309	6,243

Tab. 2.5 Topographig heterogenity of sites.

Distance to water

Nearest distance to a stream was calculated using PostGIS.


New settlements are almost twice as far from water as old settlements, not much difference in complexes.

Site type	Distance to stream
New settlement	1837.22
Old settlement	1028.14
New complex	1211.43
Old Complex	1253.76

Tab. 2.6 Average distance to water of different site types.

Elevation

The Pattern of Roman cisterns: Roman cisterns were being placed at the higher elevations. *Graph* 2.5 shows the graph of all sites versus elevation, those with cisterns in brown, and those without cisterns in blue.

Graph 2.5 Distribution of sites and cisterns with elevation.

So there are two peaks in sites generally, but one peak in cisterns. The next question was the distribution of cisterns within these two zones. The ages and attributes of sites at -100 to 50 meters and 300 to 450 meters have been checked with a focus on the cisterns. Results:

Site type	-100 to 50 meters		300 to 450 meters	
	total	percent	total	percent
cisterns	1		34	
installation	14		28	
installation with cistern	0	0 %	13	46.40 %
single complex	8		31	
single complex with cistern	1	12.50 %	15	48.40 %
settlement	4		10	
settlement with cistern	0	0 %	3	8.80 %

Tab. 2.7 Distribution of cisterns in relation to the altitude of find sites.

Cisterns are mainly going to single complex sites (farms) and installations—which sometimes but not always are the same sites. Cisterns are not going to settlements. Most of the single complexes at higher elevation are Roman/Byzantine.

What we have is a settlement pattern from the Roman period of building or developing single complexes, about half the time with supporting cisterns. (Cisterns seldom appear alone.). There is also an equal percentage of cisterns associated with "installations". These installations are mostly for agricultural use (olive presses, wine presses, and channels) suggesting some irrigation was being done.

2.1.2.4. Summary and Discussion

What is known from the geographic analysis:

- Most site locations seem connected to water in some way.
- Old settlements are best connected to riverine habitat.
- The cisterns are more connected to single complexes.
- New settlements are markedly more distant from water, but received water from other sources such as aqueducts.
- New single complexes are found on the most

topographically heterogeneous (hilly) areas—suggesting less desirable sites.

- But new settlements are on the flattest ground—the uplands away from the streams.
- There does not seem to be any significant connection to habitat apart from riverine habitat.

Combining this with the historical and archaeological knowledge, a narrative emerges.

In Hellenistic times Gadara was a city center with only a few settlements around. People needed security (walls etc.) because of political insecurity; some settlements were abandoned between the 3rd century BC and the Romans conquest.

With Pompey 63 BC Roman occupation started. Slowly infrastructure and agriculture were improved. In the first century AD pax romana (*Hadrian 117–138) offered a secure and peaceful surrounding and new settlements were established; in the 2nd century Roman government supported urbanization of cities in the eastern part of the Roman Empire; population growth during roman times and even more in Byzantine times.

A decision by Hadrian¹⁴ changed the retirement benefits of Roman soldiers—rather than being settled together in *"colonia"* they were given land allocations on individual single complexes. This can be seen in the archaeological record in the increase in single complexes during the post-Hadrianic, Late Roman – Early Byzantine period (54 new versus 17 pre-existing single complexes in the study area).

Associated with the Roman farm building was a sudden development of cisterns. When most of the cisterns are at the same elevation, and most associated with single complexes and agricultural installations of the later Roman period, it suggests they were all part of a large project and that some Roman engineers planned and executed the building of the water infrastructure. This was probably part of a governmental project and not everybody doing it independently in his backyard. To determine the best places for cisterns and to build so many at the same elevation zone seems more like a "master plan" to cultivate the area. But was this just an investment to raise more food?

Our most likely guess: after gaining control of the area, veterans from the army were given land (as the Romans did everywhere) and they were supported by military engineers to make the most of the land. Why all the effort—and it was a lot of effort! Surely not just to grow a bunch of grapes.

This area was on the edge of the Empire, facing the desert nomads and the Parthians, a dangerous area¹⁵. It was in Roman interest to strengthen it. Settling veterans in this frontier area made military and strategic sense beyond the economic gain from developing the area. Hence the investment in individual farms for individual soldiers. This was not cost effective in economic terms but was cost effective in military terms. The veterans would be a line of defense.

Did this change occur in the 2nd century following a visit and assessment by Hadrian? Very likely. This would explain the changes observed between Early Roman and Late Roman (with the visit of Hadrian essentially dividing the two periods). Hadrian had the vision to think in geopolitical terms and also to identify the local changes needed to serve geopolitical needs. The timing would be right, and the emperor would have the ability to override local concerns about expense in order to invest in major infrastructure that did not have much immediate profit.

2.2. The Vegetation of Northern Jordan: Two Transects from the Jordan Valley to the Eastern Highlands

by Avi Shimida/Linda Olsvig-Whittaker/Katja Soennecken

2.2.1. Introduction

There have been a few vegetation maps of northern Jordan in the past¹⁶, but the ecological nature of the vegetation still needs proper explanation, which we will try to do here.

In northern Jordan, there are actually two gradients of vegetation running east and west, meeting at the highest elevation. The main one goes from the highest elevations eastward, and has the typical vegetation of the arid and semi-arid eastern Mediterranean Basin. The general macro-gradient comprises Mediterranean chaparral (maquis shrubland) in the more humid areas, moving toward dry woodland, then to a spiny dwarf-shrub transitional belt, reaching semidesert in the easternmost end of the gradient.

Because of the peculiar geomorphology of the Jordan Rift Valley, with its steep escarpments going below sea level in the valley on the west side of northern Jordan, the usual vegetation transect is inverted and goes from humid chaparral at its highest elevations, to a narrow oak woodland belt. This continues downward into a dwarf-shrub transition belt and finally an open pseudo-savannah in the foothills of the Jordan valley. Northern Jordan is a terminus of the rich Mediterranean vegetation, which is gradually being replaced by transitional steppic vegetation with some relict Mediterranean elements further inland, and is the main southern outpost of Mediterranean vegetation and floral elements. South of Wādī Zarqā' many Mediterranean elements disappear, such as *Quercus boissieri, Phillyrea media, Platanus orientalis, Fraxinus syriaca, Pinus halepensis* and many orchids.

Major early research about the vegetation of Jordan was initiated by N. Feinbrun and M. Zohary¹⁷, who made the first detailed vegetation map of Jordan. However, some vegetation units described by them cannot be observed in the field and were more likely potential climax vegetation. The authors did not distinguish between potential climax vegetation and actual vegetation, unfortunately, but they did establish the basic framework and rationale of the geobotany of Jordan. Our current report essentially continues from their main findings.

The variation in vegetation is formed mainly by three geomorphological patterns that form northern Jordan's landscape.

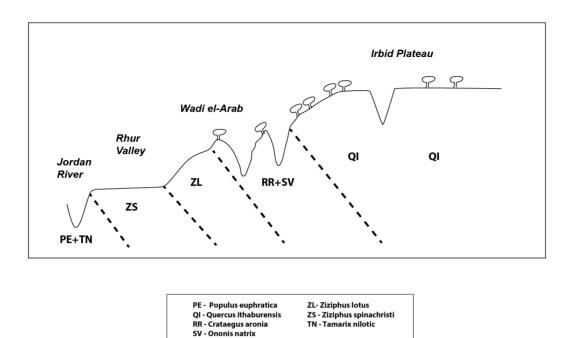


Fig. 2.5 Transect 1, from Šūna to the Irbid plateau. Geomorphological pattern 1: Zarqā' to 'Ağlūn mountains to Irbid plateau with basalt at the east end.

2.2.1.1. First Geomorphological Pattern

- The main ridge is split into high mountains in the south (the 'Ağlūn mountains) at 1207 meters while the north is formed by the Irbid plateau at about 300–500 m, dissected by many wādīs toward the west and the north. Both areas are 99 % limestone, with hard limestone forming rugged, step like and stony areas. Where bedrock is soft limestone, it forms gentle slopes and valleys.
- 2. Nari/caliche (limestone formed by calcified soil) covers a large area around Ramat Irbid, forming hard limestone landscape even though the bedrock is soft.
- 3. In the Northeast, bedrock composed of basaltic rocks that do not produce a vegetation much different from the limestone.
- 4. Most of the water courses of the area briefly carry water in winter. There has been a major loss of water flow in the past century; what were formerly perennial streams until the 1950s are now dry (Wādī al-'Arab, Wādī aṭ-Ṭayyiba, Wādī Yābis). The only perma-

18

Long 1957.

nent rivers are the two that border this area: the Yarmūk on the Syrian border in the north, and Wādī Zarqā on the border between Gilead and Balka in the south. There is one exception—Wādī Rāğib still carries permanent water south of 'Ağlūn and still has *Platanus orientalis* growing along the river.

2.2.1.2. Second Pattern: From the Ridge, Moving East with Decreasing Rainfall

Moving east from maximum elevation there is a drop in rainfall, drop in humidity, and a warmer climate. There are many references on this, best summarized by Long¹⁸. This drop is very gradual from about 500 mm to 100 mm annual rainfall, from 1200 m elevation to 700 m. In Jordan, this does not end in extreme desert, but only semi-desert (the Syrian Desert¹⁹).

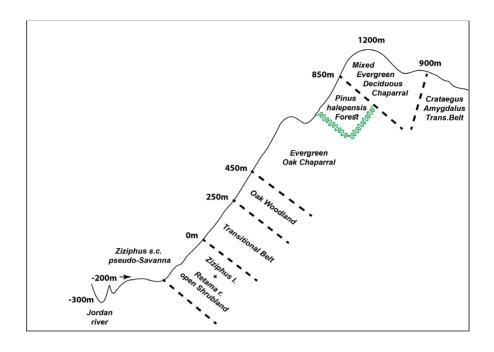


Fig. 2.6 West escarpments of the 'Ağlūn mountains, toward the Jordan valley.

2.2.1.3. Third Pattern: Rift Valley

The third pattern of northern Jordan is shaped by the geomorphology of the "Dead Sea Transform" of the African Syrian Rift Valley, forming a geomorphological "Graben" with Jordan moving north, Israel moving south. In geological time, this configuration is very recent. All research suggests that until the end of the Miocene, all northern Jordan was drained by rivers leading to the Mediterranean. In the Pliocene, about 5 million years ago, the Rift Valley was deepened in the Levant area, disconnecting the drainage system to the Mediterranean, and the paleo-Dead Sea was formed.

In the last 2.5 million years the Jordan Valley canalized drastically, forming deep, steep escarpments on the west side of the plateau and mountains along the entire west of Jordan, and deep soils developed in the Jordan Valley. It was only in the late Pleistocene, when the paleo-lake Lisan dried out, that the badlands of the Zor formation were created and meanders of the Jordan River were formed. Parallel to the forming of the badlands and the deep soils, steep rocky escarpments in the foothills of the 'Ağlūn mountains were also formed. This geomorphological unit of the Zor, the Jordan Valley deep soil, the escarpments and mountain is the framework in which the vegetation of this area developed. This third pattern is unique since part of it goes 200 m below sea level and forms a dry tropical vegetation in which many Sudanic elements penetrate to the north and reach their northern limit in this area, e.g. *Moringa peregrina* in Wādī Yarmūk.

Two vegetation transects will be presented as examples of the vegetation of northern Jordan. The first one, more northerly, is between Šūna and the Irbid plateau (*Fig. 2.5*), and the second one is between Kufrinğa and the 'Ağlūn mountains (*Fig. 2.6*).

2.2.2. First Transect: From Šūna to Irbid

Three vegetation belts can be distinguished in the area between the Jordan River to Šūna, and from Šūna to Irbid, at altitudes ranging from -250 m at the Jordan River to 450 m ASL in the Umm $Q\bar{e}s/Gadara$ region.

2.2.2.1. Lower Belt: Pseudo-savannah of Ziziphus Spina-Christi

This belt is situated on alluvial soil over chalky substrate of the Lisan Formation (ref geological) in the floodplain of the Jordan (called " $G\bar{o}r$ " in Arabic). The first, lower belt (*Fig. 2.5*) is comprised of thermophilic pseudo-savannah. It occurs in the Jordan Valley and the lower foothills of the escarpments up to approximately ASL 0 m, i.e. sea level), but pseudo-savannah penetrates to the elevation of Tall Zirā'a, in warm thermophilic wādīs.

Today this belt is mostly agricultural with a few remaining trees of Ziziphus spina-christi, and rare Sudanian elements (mainly grasses) have been found in this area, which normally belong to the Z. spina-christi community. Dominant species in agricultural areas are Prosopis farcta and Alha-gi maurorum. Along water canals, Arundo donax and Phragmites australis are dominant. Prosopis juliflora, an aggressive American species, became invasive and widespread along roadsides and wet habitats. Along the Jordan River, a typical riparian community of Tamarix nilotica and Populus euphratica is most abundant, mixed with the reeds A. donax and Phragmites.

We should mention the special appearance of *Faidherbia albida* (*Acacia albida*). Although no record of *F. albida* was officially written, there are two important locations of this species on the lower belt. One is in the opening of Wādī al-Bīra in Israel on the west of the Jordan facing Šūna, and the other is cited by G. E. Post²⁰ and M. Zohary²¹ in Wādī Tayyiba, which is south of Wādī al-'Arab. We checked Wādī at-Tayyiba during the last 20 years and did not find *F. albida*, but in the village of Samth many groves of *F. albida* are growing today,

all vegetatively sprouting on nari and chalky slopes. The name Samth is the Arabic for *F. albida*. This species is a well-known Sudanian element reaching its northernmost distribution in the East Mediterranean.

Additional arboreal Sudanian elements are rare in this community since the climatic conditions, especially the winter temperature, are at the edge of their physiological range. Thus, at the northern margin of their range we find: *Calotropis procera* reaches the Yarmūk River and the southern shore of the Lake of Galilee. *Moringa peregrina* has an exceptional northern outpost in the Yarmūk gorge near Al-Ḥama. *Balanites aegyptiaca* reaches the area of the Šēḥ Ḥusēn Crossing on the Jordan²².

2.2.2.2. Middle Belt: Open Shrubland

The major vegetation unit in the slopes is open shrubland of Ziziphus lotus, which is accompanied by subdominant Capparis sicula (C. ovata sensu Zohary). In between the shrubs is a rich annual community of annual grasses on deep heavy soil, dominated by Mediterranean-arid "transitional" chamaephytes (for example *Teucrium polium*) on shallow soil with stones. Capparis sicula, although formally a Mediterranean species definitely has an affinity with Sudanian elements in the Levant; here it is restricted to thermophilic parts of the Rift Valley.

In xeric habitats on bare chalky areas in the middle belt, two semi desert communities, of mixed Irano-Turanian and Sudano-Arabian elements are recognized. One is *Retama raetam* open shrubland. The other is the *Salsola vermiculata* dwarf-shrub community (steppe).

Both communities are very distinct on south-facing slopes with chalky substrates. Typical plant species in these communities are *Blepharis attenuata*, *Astragalus spinosus*, *Rumex vesicarius*, and *Medicago laciniata*. Two endemic species (endemic to Jordan and Israel) are typical to these communities: *Verbascum jordanicum* and *Onopordum jordanicolum*.

20 Post 1932.

22 Shmida - Aronson 1986.

²¹ Zohary 1959.

The Ziziphus lotus community is joined by the Sudanian grass Hyparrhenia hirta, in rocky south facing slopes. H. hirta is a Sudanian/Mediterranean element typical to thermophilic habitats and indicates the Sudanian savannah condition of the middle belt. Three more perennial grasses found in this community are Aristida coerulescens, Pennisetum asperifolium and Tricholaena teneriffae. This last is very rare and at the northern limit of its distribution.

2.2.2.3. Upper Belt: *Quercus Ithaburensis* Woodland

The upper belt is generally dominated by woodland in more mesic habitats and by open shrubland of different communities in xeric habitats. Where hard limestone crust (nari) is formed on north and west facing slopes and on ridges, there is an extraordinary and beautiful community of Ouercus ithaburensis. This woodland is part of the famous "Forest of Gilead" from the Bible. Its composition is mainly of Mediterranean elements such as Styrax officinalis and Pistacia palaestina in mesic microsites. Surprisingly the tree canopy is extremely monotypic, with about 99 % Q. ithaburensis cover. A degradation facies which results from cutting and grazing is a community dominated by Rhamnus palaestina with similar composition to the Q. ithaburensis community but "antipastoral" (e.g. grazing-resistant) species are more abundant. On north-facing steep slopes in this belt, Q. ithaburensis is replaced by evergreen Q. calliprinos.

Two important regional tree species are scattered over the Tabor woodland: *Ceratonia siliqua* and *Pistacia atlantica*. They overtop this community without a clear pattern of distribution, overall rare, not natural here, and in the case of *C. siliqua* probably planted for the carob pods (but also "escape" individuals are noted). *P. atlantica* regenerates from seeds and we have seen natural saplings from seeds dispersed by birds.

The *Rhamnus palaestina* community is primary in dry habitats on nari on south and east facing slopes. It has more chamaephyte elements such as *Ballota undulata* and *Salvia graveolens* (both are typical marginal Mediterranean elements, transitional between Mediterranean and desert).

In the upper belt, not on nari, usually on steep slopes, open *Retama* shrubland occupies most of

the area. It is typical to chalky steep slopes with shallow rendzina soil on east and south facing slopes. If there is a shallow soil there may be a carpet of *Stipa capensis*; if there is more than 30 % bare chalk, the desert and Irano-Turanian elements are abundant in the community: such as *Limonium lobatum*, *Rumex crispus*, *Noaea spinosa*, and *Astragalus spinosus*.

Sometimes in more mesic aspects, the *Retama* is overtaken by spiny *Genista* shrubs (garigue formation, also with *Calycotome villosa*). We suspect *C. villosa* is the result of overgrazing.

The most xeric habitat is dominated by Salsola vermiculata steppe. It occupies whitish bare chalk, usually in steep south or east facing slopes. It continues down to the "Rohr" valley (Jordan floodplain). Typical desert and Irano-Turanian elements occur between the Salsola plants, for example: Atriplex leucoclada, Noaea spinosa and Gundelia tournefortii. We also found Cucumis prophetarum. There are patches of Sarcoptoterim spinosum on the upper level of the upper belt on steep bare chalk usually with northwest aspect.

2.2.2.4. Wādīs within the *Q. Ithaburensis* Woodland

In the main large wādīs previously with permanent water, there is a community of *Tamarix nilotica* and *Arundo donax*. Today there is sewage flowing along Wādī al-'Arab, which fertilizes the surrounding area, and many eutrophic weeds, mainly of New World origin, have established there. Several chenopods, *Ricinus communis*, and *Xanthium spinosum* are there.

If the steep slopes are very chalky (sub-cliffs), then *Atriplex halimus* is added to the community and can become dominant in small chalky ravines on south facing slopes. This species and *Retama raetam* are the most common shrubs in the Saharo-Arabian desert.

Most typical (small) wādīs are steep and run perpendicular to the slope. These are dominated by *Nerium oleander, Tamarix nilotica* and *Salix acmophylla*. They are seasonal streams usually fed by small springs. A dry version of the *Nerium* community is in runnels dominated by *Rubus canina* and *Tamarix nilotica*.

In very deep wādīs with very steep wall-like slopes, even without permanent water but with moisture all year round, there is a monotypic community of *Arundo donax* with a few *Tamarix nilotica*. *A. donax* forms an impenetrable stand in these communities. (Note: *A. donax* is typical to these steep walled habitats while *Phragmites australis* is found in areas that are more open and was not found in our survey.)

2.2.2.5. Anthropogenic Communities

Large areas here are wheat fields, usually located on gentle shoulders of the hills with deep rendzina soil. *Ziziphus lotus* and *Carthamus glaucus* are the typical species and will dominate on the field edges or in old fields. *Prosopis farcta* occurs if the field is cultivated. Wasteland is common in this area, for example around Tall Zirā'a or Tall Qāq. There a community of *Capparis sicula* and *Prospis farcta* occurs. Mixed with these species is *Erucaria sativa* due the high level of organic matter.

Olive groves which are not regularly plowed have a typically rich Mediterranean annual community of *Chrysanthemum coronarium*, and many legumes, crucifers, grasses and composites. If there is no cultivation for three years, secondary *Salsola vermiculata* takes over.

In the north-west of the Irbid plateau, there is a basalt outcrop. There does not seem to be an essential difference between the basalt and the limestone areas.

2.2.3. Second Transect: From the Area of Kufrinğa to 'Ağlūn

There are more vegetation belts on this transect because of the longer altitudinal range: a. Ziziphus spina-christi pseudo savannah, b. Ziziphus lotus and Retama raetem open shrubland, c. species rich transitional belt with scattered Quercus ithaburensis, d. Quercus calliprinos chaparral, e. Q. calliprinos mixed evergreen and deciduous chaparral, f. transitional dwarf shrub community (Fig. 2.6).

2.2.3.1. Belt a

Generally, the vegetation in the Lower Belt is similar to that in the Lower Belt of the northern transect. Ziziphus spina-christi continues to dominate, but to the west, in the descent to the Jordan River, a new habitat and vegetation occurs (see Fig. 2.6). In the alluvium, we have Ziziphus spina-christi pseudo-savanna with distinctive associated species. For example: Balanites aegyptiaca (tree), Loranthus acacia (parasitic vine, now called Plicosepalus acaciae), Boerhavia helenae (vine), and Moringa peregrina (rare, but also occurs near the Yarmūk River, near Umm Qēs, the northernmost occurrence of this species). These are typical Sudanian elements. This was the primary vegetation unit, indicated by the evergreen condition of the Z. spinachristi. Z. spina-christi is secondary above ASL 0 in disturbed areas and abandoned fields; where it sheds its leaves²³. We emphasize that there is no wild *Acacia raddiana* in this northern part of the Jordan Valley. *Acacia raddiana*, the most typical Saharo-Sudanian element, only penetrates as far north as the area of Šūna al-Ğanūbīya and does not continue to the north.

There is a geomorphological environment of badlands transecting the Lisan Formation with many steep, highly erodible chalky Lisan hills. Two main communities dominate in these Lisan badlands. On the steep chalky slopes, *Salsola vermiculata* with the annual grass *Stipa capensis* dominates between the dwarf shrubs. Many desert elements are typical to this community, such as *Limonium lobatum*, *Trigonella stellata*, *Pteranthus dichotomus*, and *Reichardia tingitana* (all annuals). The second community is in the small runnels and in nearby depressions, saline vegetation dominates on the saline marls. Species include *Arthrocnemum macrostachyum* with *Suaeda fruticose* and *S. palaestina* that are endemic to the Levant.

2.2.3.2. Belt b. Ziziphus Lotus and Retama Raetam Open Shrubland

The basic structure of Belt b is the same as the vegetation of the middle belt of the northern transect.

²³ Zohary 1973.

The vegetation is dominated by open shrubland of *Ziziphus lotus* and/or *Retama raetam*. Compared to the northern transect they are less chalky substrates and rendzina and terra rossa soils are more common, with hard limestone or dolomite bedrock. Thus the *Ziziphus* and *Retama* communities are enriched by many transitional elements (called semi-arid Mediterranean by G. Long²⁴) such as *Ballota undulata, Salvia dominica*, and *Carlina corymbosa*.

2.2.3.3. Belt c: Species Rich Transitional Belt with Scattered *Q. Ithaburensis*

This belt occupies a narrow zone since the altitudinal gradient is very steep on the western escarpment of the 'Ağlūn mountains. In most of the regions, the taller elements (trees) have been cut, but scattered *Q. ithaburensis* can be observed in areas remote from villages and urban areas. These scattered Tabor oaks connect the large Tabor woodland of the Irbid plateau with the large Tabor oak forest of the Balqā' area between Salt and Amman. The communities are very rich in different growth forms and species composition. Mixed dwarf shrub communities with perennial herbaceous and scattered shrubs give some of the highest species diversity records (species/0.1 hectare) in the world²⁵.

In the peak of the spring season, some sites have been recorded with 135 species, of which 50 % are annual. The outstanding endemic geophytes in this zone are the Oncocyclus irises, which are endemic and typical to the Fertile Crescent: *Iris nigricans* and *I. bismarckiana*.

2.2.3.4. Belt d: Q. Calliprinos Chaparral

Most of the 'Ağlūn mountains above 400 m are occupied by 4–5 m evergreen multi-stemmed shrub/ tree chaparral with mostly only one species, *Q. calliprinos*. In some areas especially around Ağlūn or between 'Ağlūn and Ğabal Birqiš, the chaparral is very dense up to 95 % cover, but some areas are more open and there are agricultural plots of fruit

26 Schumacher 1889.

trees. (Note that the grazing by goats is intense and has been a main environmental driver for centuries, but today more cows and sheep occur. This keeps the spaces between shrubs quite bare.) The community is poor in arboreal elements and only 3-5 species are added: Pistacia palaestina, Styrax officianalis, Crataegus azarolus, and Ceratonia siliqua. In open chaparral a rich community of annual, geophytes and dwarf shrubs are widespread, very similar to the vegetation structure of the Galilee. Compared to the flora of the chaparral in Galilee, some important Mediterranean elements are missing: Pistacia lentiscus, Salvia fruticosa, Cercis siliquastrum, Laurus nobilis, Rhamnus punctata, and Acer syriacum. Phillyrea media is very rare in the 'Ağlūn mountains while quite common in Galilee.

Along running rivers such as Wādī Rāğib, *Pla-tanus orientalis* and *Fraxinus syriaca* are still present but becoming rare.

2.2.3.5. Belt d2 (Edaphic): *Pinus Halepensis* Forest

Large stands of natural pine forest are well preserved south of the towns of 'Ağlūn and Kufrinğa, growing on marls, usually between 700 and 1100 meters elevation. This forest is very famous and was examined and recorded by classic botanists such as G. Schumacher²⁶, G. E. Post (revised by J. E. Dinsmore²⁷) and N. Feinbrun and M. Zohary²⁸. Typical calciphylic species follow the pine forest: *Arbutus andrachne, Cistus villosus,* and many dwarf shrub Labiatae (mints). This probably reflects an ammonia based nitrogen economy as described on marl by A. Rabinovitch-Vin for the *A. andrachne* vegetation in Galilee²⁹.

2.2.3.6. Belt e: *Q. Calliprinos* Mixed Evergreen and Deciduous Chaparral

Above 850 m, the evergreen chaparral is enriched by deciduous elements such as *Quercus boissieri*, *Pyrus syriaca*, and *Prunus ursina*. While in

- 27 Dinsmore Post 1933.
- 28 Feinbrun Zohary 1955.
- 29 Rabinovitch-Vin 1983.

²⁴ Long 1957.

²⁵ Wisheu et al. 2000.

other equivalent altitudinal zones in Lebanon and north Syria the evergreen chaparral is replaced by deciduous oak forest with many species of deciduous Rosaceae trees, here in the 'Ağlūn mountains the *Q. calliprinos* continues to dominate until the peaks at 1200 m. Two reasons for this can be offered; (1) the 'Ağlūn mountains are more southerly and thus warmer and drier relative to the other areas (but recent climatological data do not support this), or (2) Long term cutting and grazing of the upper deciduous mixed oak/Rosaceae forest caused its replacement by *Q. calliprinos*. Such replacement is well known in other areas in the Mediterranean.

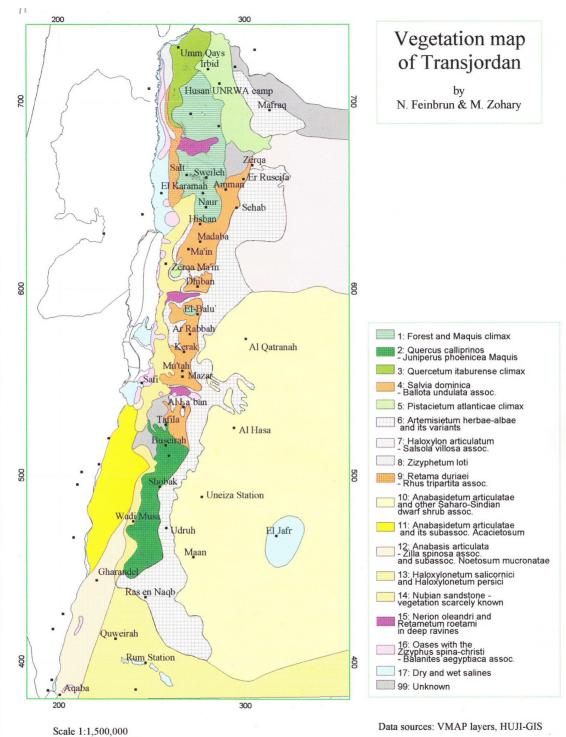
A degradation phase of the *Q. calliprinos* chaparral on the east facing escarpments of the 'Ağlūn mountains forms a pseudo-steppe forest community of *Crataegus aronia* and *Amygdalus korschinskii* with a mixed assemblage of Mediterranean and Irano-Turian elements: from Mediterranean, the *Sarcopoterium spinosum* and *Ononis natrix* and *Ballota undulata*; on the other side *Noaea spinosa* and *Achillea aleppica* and *Carex pachystylis*.

2.2.3.7. Belt f: Transitional Dwarf Shrub Community

East of the Ajloun ridge, a transitional dwarf shrub community becomes dominant toward the Syrian Desert. Without cutting and overgrazing, we assume the deciduous chaparral mixed forest will continue to dominate east of the ridge down to at least 900 m, but in reality the transitional dwarf shrub community penetrates up to the main ridge in the disturbed areas, which are quite large, and expanded dramatically since the 1950's.

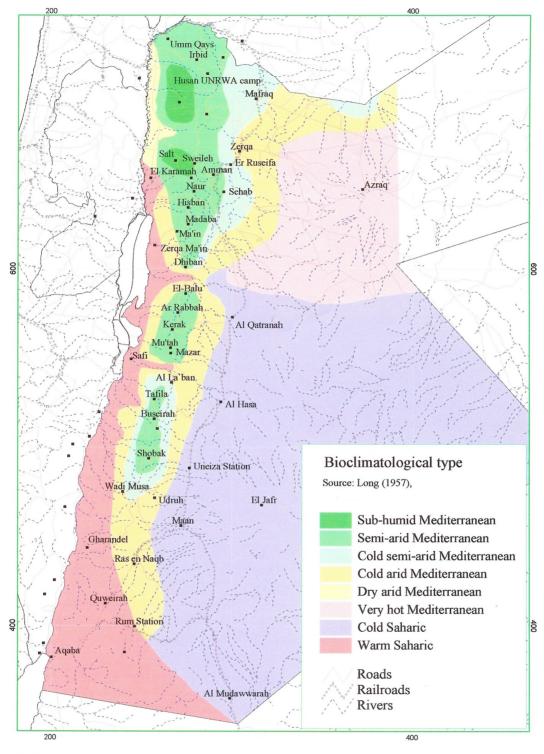
These transitional communities are dominated by *Ballota undulata*, *Salvia dominica*, and many spiny perennial herbaceous species of the genera *Carlina*, *Onopordum*, *Echinops*, *Gundelia*, and *Cirsium*. *Eryngium glomeratum*, a spiny perennial herb, is the dominant element of the transitional dwarf shrub community along the ridge and Jordanian Plateau above 850 m from Mafraq area through Amman down to Rās an-Naqb in south Edom.

Beyond the study area, we have the Syrian steppe. East of the 'Ağlūn mountains begins the Syrian steppe, which comprises a large loessial area in a range of elevation between 700 and 900 m, dominated by *Anabasis syriaca*. In rocky slopes, the typical *Artemisia sieberi* (*Artemisia herba-alba*), the most typical Irano-Turanian element, characterizes this habitat and region.


2.2.4. Discussion

We would first like to acknowledge the previous geobotanical work done in this area³⁰. Two general vegetation surveys were used for our references, accompanied by redrawn vegetation maps (*Fig.* 2.7^{31} and *Fig.* 2.8^{32}), which describe that the general formations of plant species distribution in Jordan in relation to climate and geomorphology can be crystallized as two main gradients: a north-south gradient which reflects the diminishing rainfall to the south and a west-east gradient


which reflects a rain shadow east of the mountains. (97 % of the precipitation comes from the Mediterranean western cyclones). These two gradients are pronounced in the 'Ağlūn mountains (southern transect) while they are weak in the Irbid Plateau (northern transect). *Fig. 2.9* depicts a general schematic vegetation transect of north Jordan, from the Jordan River to the south-west corner of the Syrian Desert.


- 30 Feinbrun Zohary 1955; Long 1957; Al-Eisawi 1985; Sharkas 1994.
- 31 Feinbrun Zohary 1955.

32 Long 1957.

ITM (Israel new) grid

Scale 1:1,700,000 ITM (Israel new) grid

Data sources: VMAP layers, HUJI-GIS

Fig. 2.8 Bioclimatical map of Transjordan (© Long 1957).

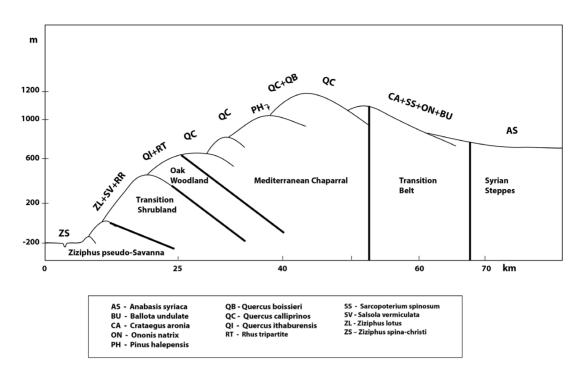


Fig. 2.9 Schematic general vegetation transect of north Jordan.

We do find discrepancies between the maps of N. Feinbrun and M. Zohary and what we observe in the field. For example, the *Quercus ithaburensis* woodlands mapped only in the north by N. Feinbrun and M. Zohary actually extend to the Balqā' area, while N. Feinbrun and M. Zohary mark Balqā' as dominated by *Quercus calliprinos*, which it is not. Only small stands of *Q. calliprinos* maquis occur in the Balqā' area.

Likewise, we do not see a belt of Pistacia atlantica forest in north-east Jordan (Fig. 3.10, Shmida personal data), but scattered P. atlantica trees occur along the entire Jordanian ridge and highlands overtopping many community types and extending toward the Eastern Desert. N. Feinbrun and M. Zohary interpreted these scattered trees as relicts of a former climax woodland or forest. We interpret these trees as a secondary introduction overriding different natural communities. Thus in the north we can see Pistacia atlantica within typical Quercus calliprinos chaparral, within Pinus halepensis forest, and Quercus ithaburensis woodland. P. atlantica continues southward within many different dwarf shrub transitional communities, and becomes widespread and dominant in the Petra area as a steppe forest, which may be the only place it is primary.

In contrast, N. Feinbrun and M. Zohary marked an area in north-east Jordan as *P. atlantica climax* forest, which we think is mainly semi desert of *Anabasis syriaca* (see *Fig. 2.9*, transect 3). The mismatch can be explained by understanding the geobotanical tradition of mapping potential climax vegetation rather than actual vegetation, which was done by earlier geobotanists like N. Feinbrun and M. Zohary. In contrast we interpret the *P. atlantica* occurrences as a secondary introduction as seen elsewhere in the Levant.

Relative to areas west of the Jordan River, most of north Jordan is Mediterranean but poorer in species diversity, reflecting its geographic position. There are no known Mediterranean species endemic to northern Jordan, which indicates a recent disjunction between the areas east and west of the Jordan. This is in striking contrast to south Jordan where many Mediterranean elements have been identified as endemic to Jordan.

Northern Jordan has experienced extensive disturbance by cutting and overgrazing³³ which has permitted the intrusion of more grazing adapted species from the eastern deserts. As rapid de-

³³ Sharkas 1994; Al-Eisawi 1985.

velopment continues, we anticipate an increase in these species and a decline in the Mediterranean elements.

According to G. Schumacher³⁴ and H. B. Tristram³⁵ this area was known to be cut since Ottoman times (19th century). It is quite surprising to find large areas in which the woodland and maquis are preserved quite well. This can be explained by rugged topography in the 'Ağlūn mountain area but does not explain the woodlands in the Balqā' and Irbid plateau. Were these private, protected areas or do we see regeneration?

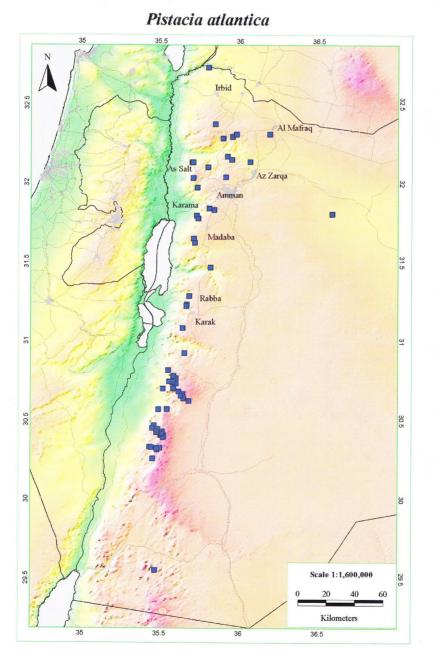


Fig. 2.10 Distribution of Pistacia atlantica in the west Jordan region (Shmida personal data).

34 Schumacher 1889.

35 Tristram 1873.

2.3. A Geoscientific View of the Natural Prerequisites of Wādī al-'Arab

2.3.1. OSL Dating of Cisterns in Wādī al-'Arab

by Sabine Kraushaar/G. Ollesch/C. SiebertH.J. Vogel/M. Fuchs

2.3.1.1. Abstract

Roman Cisterns served as rain water storage for hundreds of years and are densely spread in northern Jordan. In 749 a major earthquake hit the region and in short time many settlements were left abandoned until today. As a consequence, the cisterns were not maintained anymore and filled with sediments such that nowadays they provide a historical sediment record for the time since their abandonment. In two field surveys the locations of more than hundred cisterns were mapped and two of them chosen for detail analysis. Their individual catchments were topographically determined by differential GPS. The sediment profiles were recorded, including an OSL- and radiocarbon-based chronology. Sediment ages reveal that both cisterns were abandoned ca. 760-862 AD, which is confirmed by archaeological evidences. The calculated sedimentation volumes are translated to a long-term average soil erosion rate of 3.0-6.6 t ha-1 y-1, which is in good agreement with erosion rates from other studies within the Mediterranean. Due to the successful appliance of cistern sediments in northern Jordan, the presented approach can be used to calculate long-term soil erosion rates also in other regions within the Mediterranean.

2.3.1.2. Introduction

In Jordan, many archaeological findings give proof of the long settlement history since the Palaeolithic period. Particularly in northern Jordan many human traces date back to the era when Jordan belonged to the eastern frontier of the Roman Empire (64–324) and later to the Byzantine Empire. Archaeological findings proof the latter to be the most prospering era of the region³⁶. Today, many settlements can be retraced by the abundance of Roman cisterns, which are sealed caverns that were chiselled in the ground for rainwater harvesting. Most of these cisterns are nowadays abandoned. If not damaged, they serve as undisturbed long-term sediment traps and hence, as a historical stratigraphic archive without temporal hiatus.

Due to their function as long-term, non-invasive observatory, data from cisterns are of high interest for the calculation of erosion but also for archaeologists as archives of remnants of the time of the cisterns' abandoning. The age of the lowest layer corresponds to the time of abandoning. Subsequent sedimentation takes place excluded from light, allowing OSL dating of the sediments and thus evaluation of erosion rates (t ha-1 year-1) from the usually only few 10-100 m² large cisterns' catchments. The data can represent long-term average erosion rates from almost levelled surface positions, where erosion rates are quite low and erosion measurements are scarce. Furthermore, the method includes all major erosion processes as water and tillage erosion.

Over 36 sites with more than one cistern were recorded in the countryside of northern Jordan apart from the larger excavation in Gadara with 112 documented cisterns³⁷. The abundance of the Roman cisterns in the region is a further advantage to the intentional use for estimating average erosion rates of flat agricultural fields.

Here, the first results from the two most suitable cisterns located in the Wādī al-'Arab, northern Jordan, are presented, investigated during an interdisciplinary archaeological-geographical survey in 2010. The presented pilot study focuses on the cistern's suitability for reconstructing historical soil erosion and the potential for OSL dating.

36 Mittmann 1970.

2.3.1.3. Historical Background

In the region around Gadara, a city nowadays known as Umm Qēs in northern Jordan, first settlement structures were founded in the middle of the 4th millennium BC. From 64 BC to 324 AD the area belonged to the Roman Empire and Gadara was part of the Decapolis-a federation of ten cities in the region were Roman and Greek culture prospered. In the larger settlements such as ancient Gadara the population density was assumed to reach around 400 inhabitants per hectare³⁸. The demand of water in the region requested the construction of hydraulic structures as early as the Iron Age³⁹. During the Roman period giant aqueducts were built in Gadara⁴⁰, which enabled socioeconomic development. Additionally, to overcome water shortages during dry summers and to guarantee the city a minimum of autarchy more than 100 handmade subsurface water reservoirs (i.e. cisterns) are documented for Gadara. They served the populations and agricultural need for water⁴¹. The cisterns were either fed by runoff from adequate anthropogenic surfaces (e.g. roofs) or from natural overland flow from the typically Mediterranean limestone landscape. Since water in cisterns is stored cool and dark, they prevent contamination and are used until today around the Mediterranean Sea⁴², especially in Jordan.

In 749, a devastating earthquake destroyed large parts of Gadara and its hinterland and ceased its further development⁴³. During the following Abbasid and Ayyubid-Mamluk (ca. 750–1500 AD) and especially in the late Ottoman period (19th/20th century AD), the area became re-pop-ulated, but the population density never reached the former size and importance again⁴⁴. As a consequence, many of the cisterns were left idle after the earthquake and were since then filled up with sediments.

2.3.1.4. Study Area

Wādī al-'Arab represents the northwestern part of Jordan and drains from the 'Ağlūn plateau (500 m

- 38 Keilholz 2007; Keilholz 2012.
- 39 Porath 1984.
- 40 Döring 2009; Döring 2010.
- 41 Keilholz 2012.
- 42 Klein 2007.

mean sea level—msl) into the Jordan River at around -200 m msl. The climate is Mediterranean to semi-arid with an annual precipitation of ca. 380–530 mm, of which high amounts occur in the north-east. Geologically, the major strata are marls, lime- and dolostones of Upper Cretaceous and Paleogene age, resulting in alternating layers of aquifers and aquicludes⁴⁵. Where marly sequences are missing, karst features (e.g. karren, dolines and caverns) are abundant.

Morphologically, a plateau with rolling hills and agricultural plains characterizes the east whereas towards west and south, relief energy is higher and agricultural areas are limited to top, saddle and foot slope positions or to paleo-terraces close to the wādī bed. Cisterns for agricultural needs are located at top or shoulder positions, but were neither detected close to the wādī floor, on steep slopes nor on marly unconsolidated bedrock.

Most of the cisterns are created in the Muwaqqar Chalk Marl (MCM, *Fig. 2.11*), an aquiclude that consists of surface-near hard brittle limestones and soft marly rocks in depth. Its low permeability and easy hewing characteristics are beneficial for the construction of cisterns as it is described by M. Klein for chalky formations on the Israelian/Palestinian side⁴⁶. P. Keilholz⁴⁷ reports variable shapes of cisterns with different socket stones to close the inlet and storage volumes of 30–90 m³.

The analysed cisterns c1 and c2 (*Fig. 2.11*) are naturally fed. Both are situated less than 50 m beneath a wheat field in shoulder positions of a limestone landscape with soil patches. The average annual precipitation reaches 520 mm at both sites.

C1 is located in al-Burz, around 4.5 km east of Is'arā and is dug into the MCM with a northward exposition (*Fig. 2.11*). The eastward-exposed second cistern (c2) is carved into the Umm Riǧām Chert, some 1.5 km west of Bēt Rās (*Fig. 2.11*). Both cisterns are about 4–5 m deep and while c1 was locked with a rock, c2 was merely sealed with a socket rock (*Fig. 2.12*).

Both cisterns show a lining with mortar, which makes it possible to distinguish cisterns from storage rooms or graves. The different layers of mortar show white, grey and red colours, indicating the

- 43 Bührig 2008.
- 44 Häser Vieweger, personal communication, 2012.
- 45 Moh'd 2000.
- 46 Klein 2007, 187.
- 47 Keilholz 2007; Keilholz 2012.

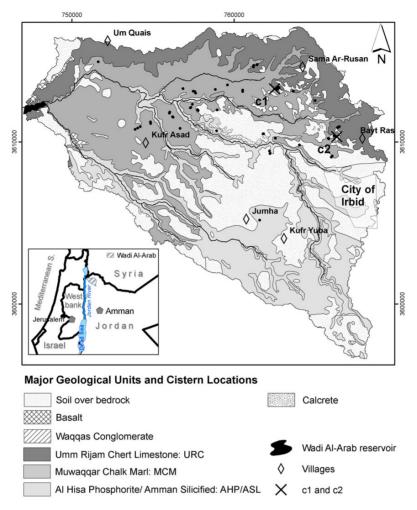


Fig. 2.11 Wādī al-'Arab catchment with the re-visited survey points of S. Mittmann⁴⁸.

use of pure lime mortar, coal or grinded ceramics as additives. Following J. Porath⁴⁹, white mortar was used in the early Roman period, coaly mortar refers to the 2nd century⁵⁰, whereas ceramic additives were common in the 3rd and 4th centuries. In later periods a re-use of early types and transitional formulas of mortar were implemented⁵¹.

48 Mittman 1970.

49 Porath 1984.

50 Keilholz 2012.

51 Porath 1984.

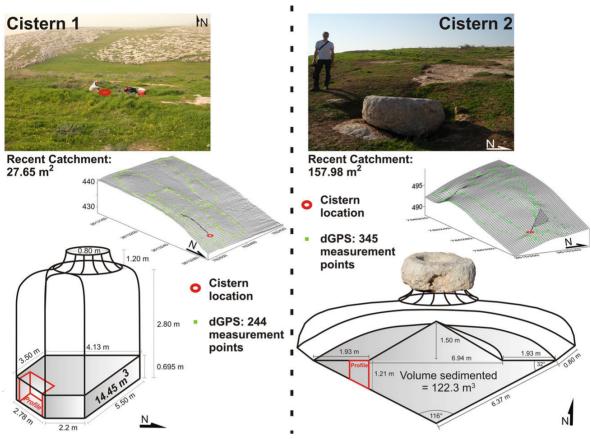


Fig. 2.12 C1 and c2 DEM, documented shape and profile position.

2.3.1.5. Methods

2.3.1.5.1. Field Analysis

During mid-2010 and early 2011, the cisterns were mapped and the interior of 35 cisterns was proved for suitability for further analysis. The applied criteria included: intactness of mortar and ceiling, no signs of anthropogenic disruptions, no water, and finally their accessibility and the possibility to work inside. Out of the 35 cisterns, 8 fulfilled these criteria and the most suitable two (c1, c2) were sampled. In both cisterns homogenous and clay rich sediments without any signs of discontinuity are deposited, promising to be suitable for OSL dating.

In the field, the sediment profiles were characterized by the parameters colour, carbonate content, structure, density and grain size, following the guidelines of the German mapping instructions⁵² and the Munsell soil colour chart⁵³. Sediment samples for laboratory analyses were taken from the

52 Ad-hoc-Arbeitsgruppe 2005.

upper and lower horizons of each profile. In addition, both the interior volume of the caverns and the sediment volumes of the cisterns were calculated.

Each cistern catchment was surveyed along transects using a Leica 900 dGPS with a vertical accuracy of <1 cm that day. From the 345 (cl) and 244 (c2) measurement points (= 1.6 point/m^2) digital elevation models of the area were generated with ArcGIS by interpolating, where ordinary kriging (trend removal of 2) yield smallest RMS error. Watersheds were calculated by implementing the hydrological toolset of ArcGIS.

2.3.1.5.2. Laboratory Analysis

Clay mineral composition was analysed using PANalytical XPert PRO X-ray diffractometer (Almelo, Netherlands) at MLU Halle. The grain size distribution was analysed with the SEDIMAT 4-12

⁵³ Munsell 1994.

(UGT, Germany) at UFZ Halle. Gamma emitting radionuclides were detected with GAMMA-X, Ntype coaxial HPGe detector (type GMX90-S) (OR-TEC spectrometry, USA).

2.3.1.5.3. OSL Dating

Five sediment samples for optically stimulated luminescence (OSL) dating were taken from the cistern sediments. From cistern cl, two samples were taken in 43 cm and 63 cm depth respectively, from cistern c2, three samples were taken in 34 cm, 71 cm and 117 cm respectively. Sampling took place during the night using red LED headlamps (640 nm), with sampling directly into opaque plastic bags, after cleaning the profile from the light exposed material.

To determine the equivalent dose (D_e) , the quartz fine-grain (4-11 µm) fraction was prepared. The sediment was first wet sieved, followed by a treatment with HCl and H₂O₂ to remove any carbonates and organics. To get pure fine-grain quartz extracts, the polymineral samples were etched in 34 % pre-treated H₂SiF₆ for several days⁵⁴. The purity of the quartz extracts was checked by IRSL measurements and aliquots with IRSL/OSL ratios greater than 3 % were rejected.

The luminescence measurements to determine the equivalent dose (D) were carried out on a TL/OSL-DA-15 Risø readers, equipped with blue LEDs (470±30 nm) for stimulation, a Thorn-EMI 9235QA photo-multiplier combined with a 7.5 mm U-340 Hoya filter (290-370 nm) for detection and a ⁹⁰Sr/⁹⁰Y β-source (1.84 GBq) for irradiation. The single-aliquot regenerative dose protocol (SAR) proposed by A. S. Murray and A. G. Wintle⁵⁵ was applied for D_a determination. Therefore, six regeneration cycles were used with shine-down curves measured for 40 s at elevated temperatures (125°C), using a cut-heat for the test dose of 160°C. Based on dose recovery and pre-heat plateau tests, a preheat temperature in the range of 220-260°C was chosen for the natural and regenerated OSL signals. The result of the dose recovery and preheat plateau test indicates that the given dose could be reproduced for the used temperature range of 220-260°C.

- 54 Fuchs et al. 2005.
- 55 Murray Wintle 2000.
- 56 Murray Wintle 2000.

Up to 24 aliquots per sample were measured for D_e determination. D_e calculations are the mean values of n aliquots for each sample, where n is the number of aliquots which passed the following criterion: a recycling ratio of 1±0.1 and a recuperation value of 5 %⁵⁶. The standard error of the mean was used as D_e error.

The dose rates (*D*) were obtained from sediment samples taken from within a 30 cm radius of each OSL sample location. Low-level high-resolution γ -spectrometry were applied to determine the contents of ²³⁸U, ²³²Th and ⁴⁰K. Dose rate conversion factors were used from G. Adamiec and M. Aitken⁵⁷. For all samples, an a-value of 0.035 was used to consider the α -effeciency.

The cosmic-ray dose rates were calculated according to J. R. Prescott and J. T. Hutton⁵⁸. The water content of the samples was determined using the average value of the possible water content range, based on the porosity of the samples. An error for the water content value was chosen, which included the possible water content range. The values used for the water content were checked by measuring the in situ water contents of the samples.

From sample c1_63cm, no quartz for an OSL measurement could be extracted. However, an archaeological sherd, found in the depth of sample c1_63cm, was ¹⁴C dated at the laboratories of Beta Analytic Inc. in Miami, Florida.

2.3.1.6. Results

Both cistern profiles show dark brown sediment of 7.5YR/5.6 colour. The upper 30–50 cm of sediment is subpolyedric bedded with small carbonatic rock detritus in between reflecting the youngest deposited material in the cistern. Below follows a layer of homogenous sediment of the same colour, which is interrupted by a carbonatic stone layer infilled with coarse sand at 80 cm depth in case of c2. The profile thickness reaches 69.5 cm (c1) and 121.0 cm (c2), respectively, with a consistent carbonate content of 10–25 %. C1 shows a 2 cm thick ceramic and charcoal mortar layer above the bedrock, whereas in c2 only a single charcoal layer of 1 cm exists.

The topographic measurements resulted in a catchment size of ca. 28 m^2 for c1 and ca. 158 m^2 for

- 57 Adamiec Aitken 1998.
- 58 Prescott Hutton 1994.

Sample_ depth	Geology	Clay [%]	Silt [%]	Sand [%]	Density [g/ cm3]	Water cont. [%]
c1_34 cm	МСМ	46.5	51.4	2.1	1.15	24
c1_63 cm	МСМ	n.a.	n.a.	n.a.	1.15	27
c2_43 cm	URC	36.7	44.3	19.0	1.14	27
c2_71 cm	URC	n.a.	n.a.	n.a.	1.12	25
c2_117 cm	URC	n.a.	n.a.	n.a.	1.14	26

c2. Estimated sediment volumes from cistern infillings are 14.6 m³ (c1) and 122.3 m³ (c2) respectively.

Sediment characteristics for the four sediment

samples for OSL and radiocarbon dating and their analytical results are listed in *Tab. 2.8* and *2.9* and *Fig. 2.13*.

Tab. 2.8 Sample characteristics from cistern 1 and 2. n.a. = not available.

Sample	U	Th	K	[Gy/ka]	De
c1_43 cm	7.04±0.24	4.44±0.25	0.64 ± 0.02	2.92±0.16	1.83±0.10
c2_34 cm	7.59±0.16	5.18±0.25	0.68±0.02	3.16±0.17	3.61±0.40
c2_71 cm	7.31±0.08	5.42±0.25	0.93±0.03	3.31±0.18	4.02±0.15
c2_117 cm	6.96±0.08	4.44±0.25	0.69±0.01	2.94±0.16	3.39±0.24

Tab. 2.9 OSL analytical data: Sample code, 238U, 232Th and 40K-concentrations, total dose rate and equivalent dose. Note: For dose rate calculation, a water content of 20 % and an a-value of 0.035 was used.

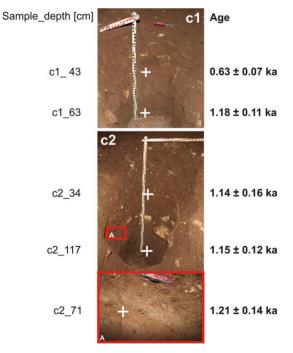


Fig. 2.13 Profile pictures, sample locations and sediment ages.

The start of sedimentation in cistern 1 at 1.19 ± 0.03 ka cal BP (Beta-327418) is confirmed by cistern 2, where the basal sediment has an age of 1.15 ± 0.12 ka (c2_117 cm), followed by OSL sample c1_43 cm, with an age of 0.63 ± 0.07 ka.

Cistern 2 shows in the upper profile and age of 1.14 ± 0.16 ka (c2_34 cm) respectively. From both cisterns, all sediment ages are within their errors in chronostratigraphic order, confirming their correctness. Sedimentation in cistern 2 shows with sample c2_71 cm a distinct fining-up of sediments. This characteristic indicates a single deposition event, with finer sediments on top, representing the end of the sedimentation event at 1.21 ± 0.14 ka.

Based on the OSL ages and the single ¹⁴C age, *Tab. 2.10* lists minimum and maximum erosion rate estimates, given in ton per hectare and year [t ha⁻¹ yr ¹] for each cistern. For mass calculations, an average bulk density of 1.15 g cm⁻³ for cl samples and a mean of 1.13 g cm⁻³ for c2 samples was used *(Tab. 2.8)*. All

samples showed a standard deviation in bulk density of 0.012 g cm⁻³. As the bulk density is the sensitive parameter for these calculations its standard deviation was used to estimate the error of the erosion calculations (*Tab. 2.10*). Calculations were performed in each cistern from the youngest age±SD (upper horizon; min. and max.) and from the oldest $age\pm SD$ (lower horizon, min. and max.) calculated until 2012 (year of measurement) in respect to the sedimentation volumes in the cisterns. The results show a general mean of 5.07 ± 0.15 t ha⁻¹ yr⁻¹ and range in total between 3.04 and 6.64 t ha⁻¹ yr⁻¹.

Cistern and Period of Calculation	Catch- ment Estim.	Volume Sediment [m ³]	Catch- ment [m ²]	Sediment yield [t/ ha]	Age±SD	Years	Sediment yield [t/ ha/a]	Error [t/ ha/a]
Cistern 1 upper hori- zon	dGPS	8.9	27.7	3063.6	Min	700	5.31	0.06
			27.7	3063.6	Max	560	6.64	0.07
Cistern 2 upper hori- zon	dGPS	55.2	158.0	3962.5	Min	1300	3.04	0.03
			158.0	3962.5	Max	980	4.03	0.04
Cistern 1 lo- wer horizon	dGPS	14.4	27.7	4951.6	Min	1222	4.92	0.05
			27.7	4951.6	Max	1282	4.69	0.05
Cistern 2 lo- wer horizon	dGPS	94.9	158.0	6812.5	Min	1030	6.59	0.07
			158.0	6812.5	Max	1270	5.34	0.06

Tab. 2.10 Parameters for the calculation of the erosion values in both cisterns.

Min = Age+SD; reference year 2012; Max = Age-SD; reference year 2012.

2.3.1.7. Discussion

2.3.1.7.1. Dating Reliability

The radiocarbon age shows the smallest error. However, the method demands the availability of organic matter in the sediment and its temporal close relation to the final deposition in the cistern. Thus, if old organic matter gets incorporated in the sedimentation process, the time of deposition would result in an age overestimation. In contrast, OSL dating determines the last process of sediment reworking and its final deposition, thus determines the last process of sediment reworking directly. However, OSL ages show a lower precision than ¹⁴C ages. In this study, several indicators support the correctness of the OSL ages:

1. The OSL characteristics like brightness of the sample, OSL growth-curve behaviour and dose recovery tests are very good.

- 2. The one derived ¹⁴C age and OSL results agree within errors (*Fig. 2.13*).
- 3. The OSL ages are in chronostratigraphic order.
- 4. The maximum age of the oldest sediments of ca. 1.2 ka correspond well with the age estimate from various archaeological proxy.

2.3.1.7.2. Erosion Rates

Although there are differences in catchment size and shape of the two cisterns, both catchments show similarities like morphometry (slope, aspect etc.), hydrology, time of abandonment and the assumed erosion processes that took place, namely water erosion in form of inter rills, rills, ephermal gullies and the translocation by the plough. The averaged erosion values of both cisterns cover a small range (3.0–6.6 t ha⁻¹ yr⁻¹), supporting the robustness of the results. Furthermore, the deposited volume represents 0.5–0.6 t cm⁻², which equals for both cisterns a soil cover loss of 34 cm (c1) and 59 cm (c2) in height from the cisterns catchments in a maximum of 1300 years. These calculations are based on the recent catchment size calculations. However, due to changes in agricultural practices (direction of furrows) over time, catchment size might have somewhat changed. Such changes are not reproducible today and could be a source of error to the calculations but are assumed to be of minor effect.

The calculated erosion rate of 3.04-6.64 t ha⁻¹ yr¹ is difficult to compare with values from similar regions. Particularly in the Mediterranean, erosion rates are subject to remarkable uncertainty⁵⁹, since their calculation is strongly based on both the observed scale and the applied method of measurement⁶⁰. Additionally, their estimations are prone to a variety of effects, including the connectivity of detached particles to small channels or intermediate storages in small catchments (<10 km²) and periods of stronger precipitation or drought⁶¹. Hence, erosion studies in the circum-Mediterranean region reveal extremely variable erosion rates for agricultural fields. C. Kosmas et al.62 report of 0.15-0.9 t ha⁻¹ yr⁻¹ on cereal fields, 1.0-6.8 t ha⁻¹ yr⁻¹ in fields that show ephermal gullies as major sediment exporters⁶³ and even 0.5–107 t ha⁻¹ yr⁻¹ from fields in Spanish Navarra in comparison to fields from around the world⁶⁴. The erosion rates derived from our cisterns (3.04–6.64 t ha⁻¹ yr⁻¹) fall into the lower range and document a reasonable soil loss. Results are coherent with recent field observations around the cisterns of slope parallel tillage practice triggering tillage erosion, canalizing runoff and increasing rill erosion.

The age estimation of cistern 1 suggests an accelerated sedimentation over time as 20 of 63 cm sedimentation occurred in the first 622 years and 43 cm from 0.63 ± 0.07 ka until today. In contrast, the age results of cistern 2 can be interpreted in two ways:

- 59 García-Ruiz et al. 2013.
- 60 Fleskens Stroosnijder 2007.
- 61 García-Ruiz et al. 2013.
- 62 Kosmas et al. 1997.
- 63 Vandaele et al. 1996.
- 64 Santisteban et al. 2006.

- 1. The ages represent very strong erosion and hence deposition events within the first 10 years (1.15–1.14 ka cal BP). During that short period, 83 cm of the total 117 cm were deposited in cistern 2.
- 2. The interpretation of the sedimentation rate between the estimated ages at only two locations within one profile is afflicted with considerable uncertainty and therefore can only be interpreted with care.

Concerning periods of accelerated erosion a short review of the agricultural development in the region will help for a better understanding. S. Gibson⁶⁵ concludes from proxy data that a switch from lowland agriculture to highland agriculture in the region took place in the Early Iron Age (1200-500 BC). He further postulates on the basis of archaeological surveys that only during Iron Age II (1000-500 BC), a time of stronger organizational authority, economic stability, and population pressure, widespread terracing was implemented. During Roman times, the Decapolis region continued to prosper and Roman settlement patterns show that more or less every possible position was farmed and inhabited⁶⁶. This leads to the assumption that during Roman times terraces must have been under continuous use and maintenance if not further expansion occurred. The abandonment of the area is a result of the weaker organizational authority of the post Roman Empire, the Abbasid and Ayyubid-Mamluk period (c. 750-1500), which due to this fact was less resilient to the devastating earthquake and its consequences. Recent land abandonments in southern Spain show that not maintained terraces eventually collapse and yield high sediment loss⁶⁷. These considerations could attest periods of accelerated erosion after the abandonment of the region. which occur at different times. On the other hand, land abandonment can also result in succession and hence, reduced erosion rates⁶⁸. Thus, until now, the obtained results cannot indicate precise periods of time with pronounced erosion events for the studied region. Therefore, further analysis of cistern sediments with higher temporal resolution are needed.

- 65 Gibson 2001.
- 66 Glueck 1942; Mittmann 1970; archaeological survey Vieweger Häser 2010.
- 67 Koulouri Giourga 2007.
- 68 Grove Rackham 2001.

2.3.1.8. Conclusion

Roman cisterns in northern Jordan serve since their abandonment as historical sediment traps. Sediment profiles of two cisterns were analysed and dated with OSL and radiocarbon dating. Both methods reveal maximum sedimentation ages of 760–862 AD and therefore agree well with archaeological findings, which lead to a time of abandonment of the area in the mid of the 8th century. Based on the dating results and detailed GIS-based topographical analyses of the cistern catchments, long-term average soil loss was calculated with an estimated erosion rate of *c*. 3.04-6.64 t ha⁻¹ y⁻¹.

From the above stated uncertainties and boundary conditions for short-term erosion observations, the use of cistern sediments to calculate longterm erosion rates has considerable advantages. This type of sediments archive does not suffer from short-term weather fluctuations but covers all kinds of extreme events. Furthermore, the method is minimal invasive and no edge effects occur, as installations are not needed. The great abundance of Roman cisterns as mapped for this study and documented for the region constitute a further advantage when aiming at various long-term average soil erosion rates of nearly levelled positions and across regions.

However, suitable cisterns have to be chosen very carefully. Important indicators are (i) the existence and intactness of mortar referring to their use for water storage and prove impermeability and (ii) no signs of any anthropogenic disruptions. Still, a significant stratification could only be demonstrated for one out of two cisterns, raising important questions to the frequency of the erosion processes. Despite the considerable uncertainties we conclude that the analysis and dating of cistern sediments is a useful approach and with further implementation and method development could be a useful tool for the estimation of average erosion rates in areas around the Mediterranean.

2.3.1.9. Acknowledgements

The authors especially thank Dr. K. Soennecken and P. Leiverkusen from the Biblical Archaeological Institute in Wuppertal and Prof. Dr. Dr. Dr. h. c. D. Vieweger and Dr. J. Häser from the German Protestant Institute of Archaeology for giving the chance to accompany the Tall Zirā'a hinterland survey. Further thanks go to S. Schulz for his help during the field campaign and Dr. M. Raggad for his local expertise and steady support. Special words of gratitude are devoted to the technicians at the labs of MLU Halle and UFZ, to Prof. Pöllmann (MLU), and to M. Fischer from the luminescence laboratory at the University of Bayreuth for OSL sample preparation.

Last but not least, thanks go to the countless Jordan farmers that allowed us to access their land and provided us company and provisions in breaks and the German tax payer for funding the SMART II project (FKZ 02-WM1080) through the Federal Ministry of Education and Research, the IPSWat and the Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE). The research is implemented within the framework of the multilateral project SMART II (= Sustainable Management of Available Resources with Innovative Technologies). The project aims at the development of a transferable approach for an integrated water resource management (IWRM) in semi-arid regions with water shortage. Infiltration and therefore soil erosion are sensitive parameters for hydrological modelling.

2.3.2. Natural Resources in Wādī al-'Arab

by Sabine Kraushaar/Marwan Al-Raggad

The following chapter is the linguistic attempt to communicate geological, pedological and geographical findings to the interested archaeological community. Therefore, technical terms were reduced and further explanations offered in order to communicate on common ground between the disciplines. Some details may be generalized or "lost in translation". The authors hope readers will understand this as a necessary reduction to allow for an interdisciplinary dialogue.

Fig. 2.14 a Basalt bowl.

Fig. 2.14 b Flint tool.

Fig. 2.14 c Crude iron nucleoids.

Fig. 2.14 d Bitumen.

Fig. 2.14 Examples for the anthropogenic use of natural resources in the Wādī al-'Arab. a: Basalt bowl, TZ 001209-001; b: Flint tool, TZ 001332-001; c: Crude iron nucleoids, TZ 006996-001; d: Bitumen from Dead Sea, TZ 007245-001 (© BAI/GPIA).

2.3.2.1. Introduction

The existence of natural resources in a landscape is an important factor in the establishment of permanent settlements. Many of the historically utilized resources in northern Jordan derive from the direct geographical environment and are a result of its geological history. Findings from Tall Zirā'a und Gadara include tools and arrowheads made from flintstone (= silex), construction elements and handicrafts made of basalt and limestone, decorations on the 'Ain Ġāzāl figurines and sealing compound made of bitumen, iron nucleoids as potential iron resource and ammunition, as well as ceramics made from clay, obtained from the clay-rich soils in the region (*Fig. 2.14*).

While known iron resources and basalt are a more local phenomenon in the region, others, such as flint can be found in different geological units throughout the hydrological catchment area of the Wādī al-'Arab (*Fig. 2.15*). Suitable clay for ceramic production can be found in many areas where the chemical weathering of the calcareous geology leaves a carbonate-poor soil, rich in weathered minerals with a grainsize not bigger than 2 μ m—namely clay.

Hence, the occurrence of these resources is tightly coupled to the geological genesis of the Wādī al-'Arab, as well as the subsequent soil formation in the area. The former will be explained in more detail in *Chap. 2.3.2.2*. The most important geological units in the region with their respective resources are illustrated in *Chap. 2.3.2.3*. Finally, clay *(Chap. 2.3.2.4.)* and soil development in the region *(Chap. 2.3.2.5.)* are discussed regarding potential natural repositories for suitable clays to use in ceramics production and the agricultural potential of the area.

2.3.2.2. The Geological Genesis of the Wādī al-'Arab

The geological foundation of the Wādī al-'Arab consists mainly of sedimentary rock in the form of different hard limestones as well as carbonate- and clay-rich (= marly) unconsolidated marl from the Eocene. The different geological units result from

the deposition circumstances during the respective historical period and were mainly controlled by the advancing and retreating of the former Tethys-Ocean. In the following we provide a short summary of the geological developments of the Middle East and the Wādī al-'Arab basin, including the Tall Zirā'a, as well the Gadara/Umm Qēs plateau to the north. For more detailed information, the authors suggest reading F. Bender, A. Horowitz, and K. Bandel and E. Salameh⁶⁹:

In the Precambrian, the region known as the Middle East today was formed as a stable continental margin⁷⁰. The advance and retreat of the Tethys-Ocean and the Arabo Nubian Massif to the South as "stable nucleus" dictated the geological evolution of the area, and resulted in the accumulation of shallow marine sediments, such as marine organisms as well as the delivery of terrestrial sediments through rivers to the shorelines of the former continent⁷¹. S. Kraushaar et al.⁷², as well as Al-Sharhan et al.⁷³ found clay minerals such as quartz in several soil, respective geological samples from Wādī al-'Arab that hint either at an aeolian input through the air or support the assumption of terrestrial sediment input through rivers for example⁷⁴.

These marine sediments with terrestrial input were gradually lifted up to the Creataceaous, a process that included strong formative tectonic phases, leading to the expansion of the Red Sea and the Gulf of Aden and the development of the Jordan Rift System⁷⁵.

In north-west Jordan, the 'Ağlūn plateau is built up of these marine sediments, which differ in their composition, and thus rock characteristics, depending on the differing sea levels of the Tethys-Ocean throughout time. When the ocean advanced between the Santonian and Late Eocene eras, shallow to moderately pelagic chalks were sedimented. Today, they form the geological foundation of the area (Amman Silicified Limestone/Al Hisa Phosphorites, Muwaqqar Chalk Marl and Umm Riğām Chert; *Fig. 2.15* and *Tab. 2.11*).

Most Roman stone quarries with a typical edge length of 30 cm x 70 cm were recorded during the Wādī al-'Arab Survey in 2010 in the Muwaqqar Chalk Marl and Umm Riǧām Chert, which supports the assumption that at least in the Wādī al-'Arab, these geological units were mostly used as con-

- 71 Flexer 2001; Moh'd 2000.
- 72 Kraushaar et al. 2015.

70 Siebert 2005.

⁶⁹ Bender 1968; Horowitz 2001; Bandel - Salameh 2013.

struction materials and for the production of cult objects (own observations Kraushaar).

The period of the Tethys advancement was followed by ocean retreat until the Oligocene/Miocene, forming a harder limestone unit. The final retreat in the Pliocene resulted in a lake-like sedimentation environment, where the geological unit today, classified as Waqqas Conglomerate, developed (orange, *Fig. 2.15*). The Waqqas Conglomerate display consolidated gravel in a carbonatic matrix, hinting at the transport of gravel in terrestrial rivers before they were deposited in the lake-like environment.

The young geological history of the area starts around 5.1 Million years ago and is marked by volcanic activity, which resulted in multiple basaltic lava sheets covering the aforementioned carbonatic rocks in the area today, known as the Gadara plateau, and protected it from further erosion (violet, *Fig.* 2.15)⁷⁶. The plateau is situated 30 km north-west of Irbid and is 340 m above sea level. The upper 150 m consist of a total of eleven overlaying basaltic layers, built up over various eruption phases⁷⁷. The basaltic layers once formed the southern part of the Syrian Mevo Hama Plateau, which was then parted by the in-cutting of the Yarmūk River, leaving the Zamlat Bhila plateau with the Ğolān Heights in the north and the Gadara plateau in the south.

The basaltic lava flows belonged to the Arabian Harrat-volcanism, which covered a coherent area of 180.000 km^2 that extended from Syria to Jordan (here alone an area of 11.000 km^2), and from Saudi Arabia to Yemen⁷⁸.

At the end of the Oligocene/early Miocene, the Jordan-Dead Sea Rift system developed and resulted in the downward sinking (= subsidence) of the Jordan Valley. Perpendicular tributaries to the Jordan Valley, such as the Wādī al-'Arab in the north, formed and reacted to this lowering of the erosion basis by deeply incising into the 'Ağlūn plateau. The regional structural development (anticlinal structure) of the plateau led the layers of different geology to dip north-westwards, leaving the oldest rocks exposed in the south-east (Amman Silicified Limestone/Al-Hisa Phosphorite: blue, Wādī Umm Ġudrān: yel-

- 74 Kraushaar et al. 2015; Al-Sharhan Nairn 1997.
- 75 Siebert 2005.
- 76 Moh'd 2000.
- 77 Mor Steinitz 1985; Ponikarov et al. 1967.

low, Wādī aṣ-Ṣīr Limestone: light green; *Fig. 2.15*) and the youngest formations in the northwest (Muwaqqar Chalk Marl: green; Umm Riǧām Chert: red; *Fig. 2.15*). Various faults, mainly aligning from north-east to south-west are present in the catchment and give proof to the ongoing tectonic movements⁷⁹.

2.3.2.3. The Geology of the Wādī al-'Arab and their Resources

The main geological units in the research areas are marked in colour in *Fig. 2.15*: Amman Silicified Limestone/Al-Hisa Phosphorite (ASL/AHP; light blue), Muwaqqar Chalk Marl (MCM; green), and Umm Riğām Chert Limestone (URC; red). These three units are composed of carbonate-rich marine deposits, such as limestone, dolomite, marl, and chalk. Wādī Aṣ-Ṣīr, Amman Silicified Limestone/ Al-Hisa Phosphorite, and Umm Riğām Chert (*Tab. 2.11*) show occasional layers, or tubers of silicified lime- or flintstone (= silex) respectively⁸⁰.

Silex is generated over million of years from inorganic silicate material and organic zoo- and phytoplankton in a marine environment. It was trimmed and used as a tool as well as for the production of arms and can be found as such throughout the catchment and especially in former settlements. Silex tools are easily identified by their characteristically sickle glee.

Besides the silex, the Umm Riğām Chert as well as the Muwaqqar Chalk Marl occasionally feature bitumen occurrences. The usage of these organic hydrocarbon compounds is known from findings in Jordan. G. Rollefsen⁸¹ found bitumen used to decorate limestone figurines in Ain Ghazal, D. Vieweger⁸² reported the use of it to seal ship beams.

In the Muwaqqar Chalk Marl, close to the Tall Zirā'a (*Fig. 2.15*, green), fist-sized iron nodules were discovered. These nodules were known from workshop area excavations and might be used for colouring ceramics or as gross mass for iron processing (*Fig. 2.14d* and 2.16).

- 78 El-Akhal 2004.
- 79 Moh'd 2000.
- 80 Moh'd 2000.
- 81 Rolefsen 1982, 44-47.
- 82 Vieweger 2012.

⁷³ Al-Sharhan - Nairn 1997.

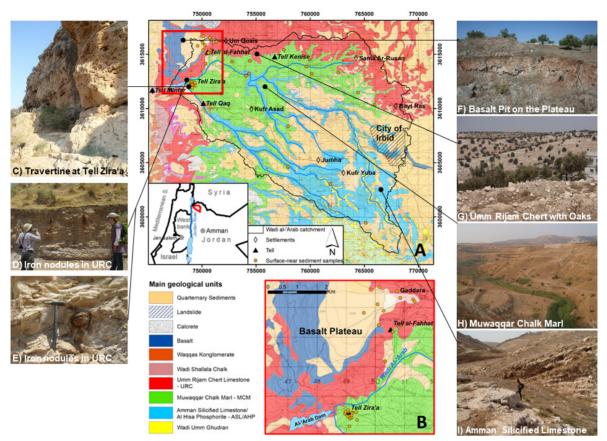


Fig. 2.15 Geological map of the Wādī al-'Arab (MWI, Kraushaar 2018).

Fig. 2.16 Iron Age workshop, Tall Zirāʿa, Square AP 120, Context 4852, view from south (© BAI/GPIA).

The iron accretions come in the form of pisoids in the $W\bar{a}d\bar{i}$ al-'Arab, which are spherical shaped iron deposits, made of concentric rings of iron hydroxide. They probably chemically precipitated in a moving, high concentrated solution during the deposition of the sediment matrix that surrounds them.

K. Bandel and H. Khouri⁸³ report other iron nodule findings, also from Triassic limestone, as well as lenticular ore bodies from the 'Ağlūn region (Warda mine) situated in the late cretaceous Wādī aș-Șīr Formation⁸⁴. The lenticular ore body, which was discovered only 35 km south of Tall Zirā'a, is the only known ore deposit in Jordan⁸⁴, and F. Bender⁸⁵ assumes a hydrothermal genesis. Hereby, water of high temperatures-probably due to magmatic activity in the subsurface-dissolve metals in the depth and transport them close to the surface. Al-Malabeh et al.⁸⁶ disagree with this theory today, and postulate a solution weathering of the iron and a consecutive precipitation of the Goethit. Whatever theory is correct, both forms of deposits provide an excellent and accessible resource for the prehistoric population to produce tools and arms.

In the north-western corner of the $W\bar{a}d\bar{1}$ al-'Arab the Gadara basalt plateau is situated partly covered by soil. This is the youngest geological unit and the basaltic stones of different porosity are used locally in Gadara as construction materials and for the manufacturing of cultural objects and are found as such throughout the catchment (*Fig.* 2.14a and 2.15F).

Tall Zirā'a itself is located in the wadī itself east of the Wādī al-'Arab reservoir. The Tall is build on an artesian spring that is the result of undergroundwater flowing from higher levels of the surrounding hills into the depth contour of the wadī where it is pressured to the surface. With time sweetwater carbonates precipitated from this water and build up a hill of Travertine on top of the springs on which the settlement was built and retrieved its water from⁸⁷. At one point either a drastic drop in precipitation caused the drying up of the spring or more likely, the Travertine hill had grown to a size that the pressure of the artesian spring was not sufficient to transport water to the surface anymore. The Travertine is a porous carbonatic rock that is found quite often along the depth contour of the wadī as well as around the tall, however no specific use is known through archaeological findings.

83 Bandel - Khouri 1981.

84 Bandel – Salameh 2013; Bender 1968; Al-Malabeh et al. 2008. 85 Bender 1968.

- 86 Al-Malabeh et al. 2008.
- 87 Bandel Salameh 2013, 253.

Period	Epoch	Stage	Age [MA (1)]	
Quarternary	Holocene		0.0117	
	Pleistocene		2.58	
Neogen	Pliocene		5.33	the accu- ons in the t package perature.
	Miocene		23.3	s to ositi men tem
Paleogene	Oligocene		33.9	Advancement and retreat of the Tethys ocean, which leads to the accumulation of marine sediments influenced by terrestrial depositions in the Precambrian. Then, gradual uplifting of the massive sediment package that is consolidated (hardened to rock) due to pressure and temperature.
	Eocene		56	Tethys oc fluenced b ifting of tl rock) due
	Paleocene		66	L retreat of the sediments in , gradual upl (hardened to (hardened to
Cretaceaous	Upper Cretaceous	Maestrichtian	72.1	Advancement and re mulation of marine s Precambrian. Then, that is consolidated (
		Campanian	83.6	ation ation is cc
		Santonian	86.3	Adv mul Prec
		Coniacian	89.8	
		Turonian	93.9	
		Cenomanian	100.5.	
	Lower Cretaceous		145	
(2) Precambrian			~4600.00	

Tab. 2.11 Timetable of the geological history of the Wādī al-'Arab (Moh'd 2000, modified by Kraushaar in 2019).

	Genesis of Northern Jordan	Geological Unit	Characteristics (Moh'd 2000, MA) and resources used by humans
		Basalt/Travertine/Cal-	
	~5.1 Vulcanic activity starts, multiple basaltic lava sheets	crete/ Soil	Resources: Basalt stones for construction of houses and cultural object. Soils for the production of ceramics and as fundament for agriculture.
	Tethys retreat: until the Miocene forming of harder limestone, then in the Pliocene lake- like sedimentation en-	Waqqas Conglomerate	<i>C</i> . 200 m thick, 1. (calcerous) sandstone, 2. marl with gravel, 3. gravels and conglomerates with limestone elements.
vironment. Dead Rift system devel downward sinking	vironment. Dead Sea Rift system develops, downward sinking of the Jordan valley, ero- sion of tributaries.		
	Tethys advancement: shallow to moderately pelagic chalks were se-	Umm Riğām Chert Li- mestone	<i>C.</i> 220 m thick, 1. Marly Chalk, 2. chalky limestone, 3. upper chert unit, bitumen present. Resource: Silex and bitumen
dim	dimented.	Muwaqqar Chalk Marl	C. 100 m thick, 1. Non bituminous chalk marl, 2. Bi- tuminous chalk marl, 3. Nodular-bedded limestone, 4. Chalky limestone cliff. Resource: Rock for construc- tion, iron and bitumen
		Amman Silicified Limestone / Al-Ḥisa Phrosphorites	
		Wādī Umm Ġudrān	<i>C.</i> 40 m thick, Fossoliferous, 1. Chalk, 2. Chalk beds with coquina limestone and dolomitic chalky limestone.
		Wādī aṣ-Ṣīr Limestone	>200 m thick, stongly carstified, 1. Dolomitized lime- stone, 2. Limestone, 3. Peloidal limestone (sometimes marly or with cherts), 4. Micritic limestone.
The geological units formed during the Jura (541.0 Ma) are not present in the Wādī al-'Aral			ned during the Jurassic (201.3 Ma) until the Cambrian t in the Wādī al-'Arab.

2.3.2.4. Clays as Important Resource for Ceramic Production

Clay has a particle grainsize of $<2\mu$ m and belongs to the smallest measurable grain size fractions. A sediment matrix is considered a pure clay if 65 % of the mass has the size of clay particles⁸⁸.

In most cases, clay derives as a chemical weathering product from silicate primary minerals and possesses a flake-like structure, resulting from stacked silicate layer packets⁸⁹. Clay minerals exist as two- (kaolinite), three- (vermiculite, smectite etc.), and four layer minerals (chlorite). The ability of all clay minerals to accumulate water molecules and other ions on the outer surface of the layer packets in layer gaps, and with some minerals between the different layers, allows the clays to swell with the uptake of water and shrink when drying⁹⁰. This is a prerequisite for the plasticity of the clay and necessary for the production of ceramics. Three layered clay minerals are characterized by a particularly high uptake and swelling potential. Furthermore, plants can access important ions at the edge of the layer packet easily, which is an important asset for fertile soil⁹¹.

Clay minerals exists in the Wādī al-'Arab in different ways:

- 1. As consolidated claystone in the geology⁹², which can become a clayey, unconsolidated, and carbonate-rich sediment after physical weathering.
- 2. As secondary clay minerals due to the chemical weathering of primary minerals during soil development. Especially in geomorphic stable positions, such as plains, levelled plateaus, saddle positions or foot-slope areas, sediments accumulate and may rest for centuries. Here, the most developed soils can be found, which correlates with the leaching of carbonates and the development of secondary clay minerals⁹³.
- As non-local, wind-transported clay mineral aggregates, which enter the landscape recently in a limited extent in the form of diffuse carbonatic dusts⁹⁴.
- 88 Ad-hoc-Arbeitsgruppe 2005; Blume et al. 2002, 13–16.
- 89 Blume et al. 2002, 13–16.
- 90 Semmel 1993.

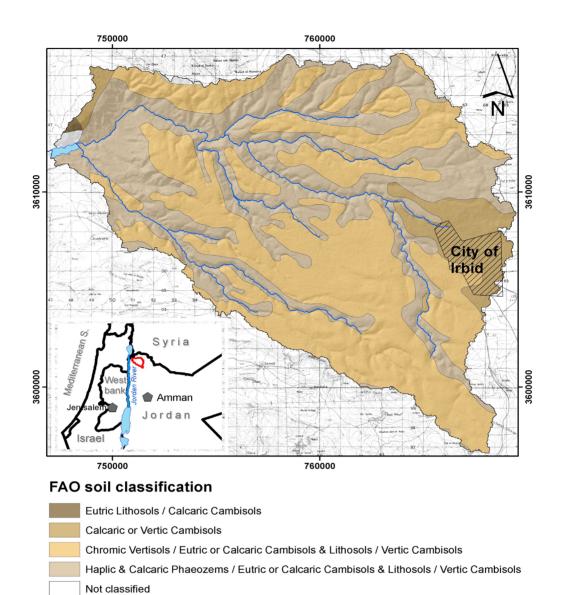
An experimental archaeological test run by the excavation team on site, and under the lead of W. Auge (2006–2010), provided evidence that carbonate-rich clays from the region (1) are not suitable for the ceramic production. The carbonates incinerate during the firing process, which causes the ceramic to crumble. However, sediments that have undergone intensive soil development experience decalcification and secondary clay mineral formation. Therefore, these substrates (2) are carbonatepoor, and rich in secondary clay minerals and are suitable for the production of pottery.

Intensive soil development is favoured on geomorphic stable positions since geomorphic activity, such as landslides or strong erosion on slopes, prohibit or delay soil development. Hence, potential repositories are more likely to be found in stable localities, such as plateau, saddle and depression positions. Fig. 2.17 shows an example of a recorded leading soil profile in plateau position in the Wādī al-'Arab. It shows 1.8 m of characteristic red, clavey (up to 46 % clay content) and homogenous soil, poor in carbonates (total inorganic carbon = 0.2 %) and stones—as is typical for Mediterranean carbonatic regions. In the lower part of the profile, just above the white bedrock, the clay content is the highest, whereas the carbonate content is the lowest. These clays are well suitable for the production of ceramics.

- 91 Ad-hoc-Arbeitsgruppe 2005; Blume et al. 2002, 14; Semmel 1993, 14 f.
- 92 Moh'd 2000.
- 93 Blume et al. 2002, 448 f.
- 94 Jahn 1995.

Fig. 2.17 Vertisol above Umm Riğām Chert Limestone with 0.2 % carbonate and 46 % clay content (Foto: Kraushaar 2010).

2.3.2.5. Soils in Wādī al-'Arab and their Agricultural Potential

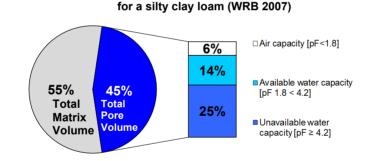

In the framework of a national soil mapping project, suitable soils were mapped in the region in two phases starting in 1989. On average, one soil profile was mapped per 3.5 km² in phase 2. The mapping focused on regions suitable for intensifying agricultural activity, like the Irbid basin west of Irbid⁹⁵. The result was a strongly generalized soil type map following the FAO classification from 1974 with four main types (*Fig. 2.18*).

The map shows on geomorphic stable relief positions mainly medium developed soils such as Cambisols and fully developed Vertisols. Especially Cambisols still tend to be carbonatic, whereas Vertisols are characterized as red and clay-rich and therefore tend to turbate due to the swelling and shrinking of the clays (lat. vertere: turn over). On slope positions, less developed carbonatic and alkali-rich Litho- and Cambisols are common, as well as organic-rich Phaeozems. Generally, soils are more yellow than red on the slopes.

Lithosols are very shallow initial soils with a high stone content. Commonly, these soils are productive but prone to erosion due to their position on the slope, and often used for forestry⁹⁶ or, as is the case in the Wādī al-'Arab, for the olive orchards.

Following the World Reference Base for Soil Classification⁹⁷, the alkali-rich Cambi- and organic-rich Phaeozems show the highest agricultural potential. Further developed soils with high clay content, as the aforementioned Vertisols on the stable relief positions, can have less favourable physical properties, such as the swelling and shrinking of the sediment matrix in regard to the soil moisture content. This causes soil gaps to tear open and roots to rip in the subsurface during dry phases in the summer months. Additionally, the water availability in clayey matrixes often results in "severe usage restrictions"⁹⁸. Plants have trouble

97 WRB 2007, 103.98 WRB 2007, 103.


creating the necessary suction potential to retrieve the water from the fine sediment pores. Hence the unavailable water in the soil matrix is present but not useful for vegetation.

However, the author observed that even on levelled positions in the Wādī al-'Arab, a high heterogeneity of clay contents exists, which does allow the cultivation of vegetables, wheat and olive orchards. Thus, a clay content of up to 50 % seems to pose no restrictions on agricultural use⁹⁹.

For a more thorough review of the ecological site conditions in the Wādī al-'Arab regarding the agricultural potential and erosion susceptibility of the landscape, a more focused soil mapping was performed by the author following the Catena principle. Therefore, various soil profiles were dug in every geological unit on the plateaus, along the slopes, and down in the fluvial deposits—if existent. Samples from all profiles were analysed for their common physical and chemical properties. 49 samples from 28 leading profiles were taken, of which 16 profiles were on agriculturally used land in geomorphically stable positions. The rest was situated on steep slopes which are used for grazing of sheep and goats as well as for olive plantations.

The following ecological site evaluation is based on the analysis of these profiles and focuses on the classification of grainsize, pH, EC and different element concentrations in comparison to European and international standards as given by H.-P. Blume et al. and J. R. Landon¹⁰⁰. It needs to be remarked that comparative literature values can vary strongly depending on the grain size, pH, precipitation intensity, management etc. of the soil and hence, can be only read as guiding values.

In average the analysed soil samples range between a silty (clay) loam to silty clay with around 32 % clay, 58 % silt, and ca. 10 % sand¹⁰¹. Thereof, an empirical pore volume can be derived of 45 %, which, because of the high clay content, only holds 14 % of plant available and 25 % of unavailable water (*Graph 2.6*).

Average soil pore volume in Wādī al-'Arab (n=50)

Graph 2.6 Average soil pore volume in sediments on carbonate and marly rock in Wādī al-'Arab (n=50; silty clay loam [FAO 1990], own data).

The predominantly silty clayey grain size composition of the substrate also gives reason for the (very) slow hydraulic connectivity and hence infiltration potential of the soils on carbonatic and marly bedrock¹⁰². This results in increased surface runoff of rainwater and hence erosion. The soil above basalt rock shows with only 16 % clay and 28 % sand an obvious shift to a coarser grain size, which reflects in a better but still moderate infiltration capacity¹⁰³. Together with the lower stone content (3 %) compared to other soils from the region (30–50 % stone content) the soil on basalt appears favourable for agriculture.

99 Observations Kraushaar 2010–2014.

101 FAO 1990 = Tu3; Ad-hoc Arbeitsgruppe 2005.

102 Landon 1991.

103 Landon 1991.

¹⁰⁰ Blume et al. 2002; Blume 2004; Landon 1997.

Concerning the electrical conductivity, as a value for the ion concentration in the soil solution, average value of 0.38 dS m-1¹⁰⁴ indicate no saliniation tendencies in the soils of the region. Furthermore, the plant available main nutrients, such as nitrogen, sulphur, and phosphor are deficient in soils on carbonatic, as well as on basalt rock. However, potassium, calcium, and magnesium are in excess available for plants in the region. The analysed trace elements (Mn, Fe, Cu, Zn, Ni, Mo) display suitable concentrations in comparison to common soil solution data from soils of different origins¹⁰⁵. Molybdenum even shows with 0.59 mg l-1 available anions an increased value for basaltic soils.

Of all the measured heavy metals, the soluble lead values are elevated in the sediments on carbonatic rock. However, generally the sorption potential of the sediments is increased due to the high clay content, the raised iron concentration, and alkali pH values (in average 7.8)¹⁰⁶ and therefore the toxicity potential can be classified as low¹⁰⁷. Over all, today the sampled lead-soil-profiles in the Wādī al-'Arab seem suitable for agricultural use in regard to the measured physical properties and available nutrients. The only restriction to agricultural use on certain position is posed by the water availability of the more clayey sediments or possible strong soil erosion on slopes. The present samples of yellow sediments from less developed soils on the slope, and red sediments from more stable positions show in the analysis no significant difference. However, the sediments from the basalts have favourable physical conditions.

Since soils develop very slowly and the climate variability in the last 2000 years was neglectable, the assumption is valid that since the Holocene and with the working of people in the region the agricultural potential has not changed much. Thus, todays soils are about the status of agricultural potential the Romans found in the region as well, and agricultural yield is mainly dependant on amount, intensity and distribution of precipitation in the region¹⁰⁸.

104 Khresat - Taimeh 1998.

105 Blume et al. 2002, 329.

106 Khresat - Taimeh 1998.

107 Blume 2004.108 Lucke 2007.

2.4. Bibliography

Adamiec – Aitken 1998

G. Adamiec – M. Aitken, Dose-rate conversion factors: update. Ancient TL 16, 1998, 37–50

Ad-hoc-Arbeitsgruppe 2005

Ad-hoc-Arbeitsgruppe, Bodenkundliche Kartieranleitung, Vol. 5 (Hannover 2005)

Al-Eisawi 1985

D. Al-Eisawi, Vegetation in Jordan, AAJ 2, 1985, 45-57

Al-Malabeh et al. 2008

A. Al-Malabeh – S. Kempe – H.-V. Henschel – H. Hofmann – H.-J. Tobschall, The possibly hypogene karstic iron ore deposit of Warda near Ajloun (northern Jordan), its mineralogy, geochemistry and historic mine, Acta Carsologica 37, 2—3, 2008, 241–253

Al Qudah 2001

B. Al Qudah, Soils of Jordan, in: P. Zdruli – P. Steduto – C. Lacirignola – L. Montanarella (eds.), Soil resources of Southern and Eastern Mediterranean countries. Bari : CIHEAM, Options Méditerranéennes : Série B. Etudes et Recherches 34 (Cachan 2001) 127–141

Al-Sharhan - Nairn 1997

A. S. Al-Sharhan – A. E. M. Nairn, Sedimentary Basins and Petroleum Geology of the Middle East, Vol. 1 (Amsterdam 1997)

Ball 2000

W. Ball, Rome in the East. The transformation of an Empire (London 2000)

Bandel - Khoury 1981

K. Bandel – H. Khoury, Lithostratigraphie der Trias in Jordanien, Facies 4, 1981, 1–26

Bandel - Salameh 2013

K. Bandel – E. Salameh, Geologic Development of Jordan. Evolution of its Rocks and Life, SMART project (Amman 2013)

Bender 1968

F. Bender, Geologie von Jordanien (Berlin 1968)

Blume 2004

H.-P. Blume (ed.), Handbuch des Bodenschutzes. Bodenökologie und -belastung. Vorbeugende und abwehrende Schutzmaßnahmen, ³(Landsberg am Lech 2004) 723–769

Blume et al. 2002

H.-P. Blume – G. W. Brümmer – U. Schwertmann – R. Horn – I. Kögel-Knabner – K. Stahr – K. Auerswald – L. Beyer – A. Hartmann – N. Litz – A. Schinost – H. Stanjek – G. Welp – B.-M. Wilke, Scheffer/Schachtschabel. Lehrbuch der Bodenkunde ¹⁵(Heidelberg 2002)

Bührig 2008

C. Bührig, Gadara/Jadar/Umm Qais, in: K. Bartl – A. al-Razzaq Moaz (eds.), Residences, Castles, Settlements. Transformation Processes from Late Antiquity to Early Islam in Bilad ash-Sham (Rahden/Westf. 2008) 97–115

De Santisteban et al. 2006

L. M. De Santisteban – J. Casalí – J. J. López, Assessing soil erosion rates in cultivated areas of Navarre (Spain). Earth Surface Processes and Landforms 31, 2006, 487–506

Dinsmore - Post 1933

J. E. Dinsmore – G. E. Post, Flora of Syria, Palestine and Sinai. A handbook of the flowering plants and ferns, native and naturalized from the Taurus to Ras Muhammad and from the Mediterranean Sea to the Syrian Desert (Beirut 1933)

Döring 2009

M. Döring, Der längste Tunnel der antiken Welt, Antike Welt 2, 2009, 26–34

Döring 2010

M. Döring, 100 km unter Tage. Längster bisher bekannter Aquädukttunnel der Antike in Jordanien und Syrien, Bergbau 5, 2010, 211–216.

El-Akhal 2004

H. El-Akhal, Contribution to the petrography, geochemistry, and tectonic setting of the basalt flows of the Umm-Qais plateau, north Jordan, Geol Bull Turk 47, 2004, 1–10.

El-Khouri 2008

L. El-Khouri, The Roman Countryside in Northwest Jordan (63 BC–AD 324), Levant, 40, 1, 2008, 71–87.

FAO-ISRIC 2006

FAO-ISRIC, Guidelines for soil description ⁴(Rome 2006)

Feinbrun - Zohary 1955

N. Feinbrunn – M. Zohary, Geobotanical Survey of Transjordan, Bulletin of the Reseach Council of Israel D, 1955, 5–29

Fleskens - Stroosnijder 2007

L. Fleskens – L. Stroosnijder, Is soil erosion in olive groves as bad as often claimed? Geoderma 141, 2007, 260–271

Flexer 2001

A. Flexer, The pre-Neogene geology of the Near East, in: A. Horowitz (ed.), The Jordan Rift Valley (Netherlands 2001)

Flesker 2001

A. Flesker, The pre-Neogene geology of the Near East, in: A. Horowitz (ed.), The Jordan Rift Valley (Netherlands 2001)

Freeman 2001

P. Freeman, Roman Jordan, in: R. A. B. MacDonald – P. Bienkowski, The Archaeology of Jordan (Sheffield 2001) 427–448

Fuchs et al. 2005

M. Fuchs – J. Straub – L. Zöller, Residual luminescence signals of recent river flood sediments. A comparison between quartz and feldspar of fineand coarse-grain sediments, Ancient TL 23, 2005, 25–30

Garcia-Ruiz et al. 2013

J. M. García-Ruiz – E. Nadal-Romero – N. Lana-Renault – S. Beguería, Erosion in Mediterranean landscapes: Changes and future challenges, Geomorphology 198, 2013, 20–36

Gibson 2001

S. Gibson, Agricultural Terraces and settlements expansion in the highlands of early Iron age Palestine. Is there any correlation between the two? In: A. Mazar (ed.), Studies in the Archaeology of the Iron Age in Israel and Jordan (Sheffield 2001) 113–148

Glueck 1942

N. Gueck, Further Explorations in Eastern Palestine, BASOR 86, 1942, 14–24

Grove - Rackham 2001

A. O. Grove – O. Rackham, The Nature of Mediterranean Europe. An Ecological History (New Haven, Connecticut 2001)

Horowitz 2001

A. Horowitz (ed.), The Jordan Rift Valley (Netherlands 2001)

IUSS Working Group WRB 2007

IUSS Working Group WRB, World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO (Rome 2007)

Jahn 1995

R. Jahn, Ausmaß äolischer Einträge in circumsaharische Böden und ihre Auswirkungen auf Bodenentwicklung und Standortseigenschaften, Hohenheimer Bodenkundliche Hefte 23, 1995

Jongman et al. 1995

R. H. G. Jongman – C. J. F. ter Braak – O. F. R. van Tongeren, Data Analysis in Community and Landscape Ecology (Cambridge 1995)

Keilholz 2007

P. Keilholz, Die Zisternen der antiken Stadt Gadara (Umm Quais, Jordanien), in: C. Ohlig (ed.), Antike Zisternen. Schriften der Deutschen Wasserhistorischen Gesellschaft (DWhG) e.V. 9 (Norderstedt 2007) 195-228

Keilholz 2012

P. Keilholz, The ancient cisterns of the Hellenistic Gadara/Umm Qais (Jordan), Tübinger Archäologische Forschungen. Unpublished manuscript, 2012 Khresat – Taimeh 1998

S. A. Khresat – A.Y. Taimeh, Properties and characterization of Vertisols developed on limestone in a semi-arid environment, Journal of Arid Environments 40, 1998, 235–244

Klein 2007

M. Klein, Back to the water cisterns, in: C. Ohlig (ed.), Antike Zisternen. Schriften der Deutschen Wasserhistorischen Gesellschaft (DWhG) e.V. 9 (Norderstedt 2007) 195–228

Kosmas et al. 1997

C. Kosmas – N. Danalatos – L. H. Cammeraat – M. Chabart – J. Diamantopoulus – R. Farand – L. Gutierrez – A. Jacob – H. Marques – J. Martinnez-Fernandez – A. Mizara – N. Moustakas – J. M. Nicolau – C. Oliveros – G. Pinna – R. Puddu – J. Puigdefabregas – M. Roxo – A. Simao – G. Stamou – N. Tomasi – D. Usai – A. Vacca, The effect of land use on runoff and soil erosion rates under Mediterranean conditions, Catena 29, 1997, 45–59

Koulouri – Giourga 2007

M. Koulouri – C. Giourga, Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands, Catena 69, 2007, 274–281

Landon 1991

J. R. Landon (ed.), Booker Tropical Soil Manual. A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics (Harlow 1991)

Kraushaar et al. 2015

S. Kraushaar – G. Ollesch – C. Siebert – H.-J. Vogel – M. Fuchs, Long-term Sediment Export Estimates from Northern Jordan using Roman Cisterns as Sediment Traps, Geoarchaeology 30, 2015, 369–378

Landon 1991

J. R. Landon (ed.), Booker Tropical Soil Manual. A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics (Harlow 1991)

Lai et al. 2008

Z. P. Lai – L. Zoller – M. Fuchs – H. Bruckner, Alpha efficiency determination for OSL of quartz extracted from Chinese loess, Radiation Measurements 43, 2008, 767–770

Leiverkus - Soennecken 2017

P. Leiverkus –K. Soennecken, The Wādī al-'Arab Survey, in: D. Vieweger – J. Häser (eds.), Tall Zirā'a, Vol. 1 (Gütersloh 2017) 198–201. Available online at http://www.tallziraa.de/data-file-bai/ docs/final_publication/V-I_1._The_Gadara_Region_Project.pdf

Long 1957

G. A. Long, The bioclimatology and vegetation of eastern Jordan (Rome 1957)

Lucke 2007

B. Lucke, Demise of the Decapolis. Past and Present Desertification in the Context of Soil Development, Land Use and Climate (Dissertation Brandenburg Technical University Cottbus 2007)

Mauz et al. 2006

B. Mauz – S. C. Packman – A. Lang, The alpha effectiveness in silt-sized quartz. New data obtained by single and multiple aliquot protocols, Ancient TL 24, 2006, 47–52

Mays 2013

L. W. Mays, Use of cisterns during antiquity in the Mediterranean region for water resources sustainability. Water Science & Technology: Water Supply. Unpublished manuscript (2013) © IWA Publishing 2013 | doi:10.2166/ws.2013.171

Ministry of Agriculture 1993

Ministry of Agriculture, National Soil Map and Land Use Project. Level 1. Hunting Technical Services LTD and Soil Survey and Land Reseach Center (Amman 1993)

Mittmann 1970

S. Mittmann, Beiträge zur Siedlungs- und Territorialgeschichte des nördlichen Ostjordanlandes (Wiesbaden 1970)

Moh'd 2000

B. K. Moh'd, The geology of Irbid and Ash Shuna Ash Shamaliyya (WAQQAS). Map Sheets No. 3154-II and 3154-III. Geological Directorate. Geological Mapping Division, Bulletin 46 (Amman 2000)

Mor-Steinitz 1985

D. Mor – G. Steinitz, The history of the Yarmouk River based on K-Ar dating and its implication on the development of the Jordan rift. Report. Israel Geological Survey, Mineral and Energy Resources Division (Jerusalem 1985)

Munsell 1994

Munsell soil color charts (New York 1994)

Murray - Wintle 2000

A. S. Murray – A. G. Wintle, Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol Radiation Measurements 32, 2000, 57–73

Olsvig-Whittaker 2017

L. Olsvig-Whittaker, Landscape Archaeology and its Methods Used in the 'Gadara Region Project', in: D. Vieweger – J. Häser (ed.), 2017 Tall Zirā'a, Vol. 1 (Gütersloh 2017) 202–206. Available online at http://www.tallziraa.de/data-file-bai/docs/final_ publication/V-I_1._The_Gadara_Region_Project. pdf

Olsvig-Whittaker et al. 2015

L. Olsvig-Whittaker – A. M. Maeir – E. Weiss – S. Frumin – O. Ackermann – L. K. Horwitz, Ecology of the Past—Late Bronze and Iron Age Landscapes, People and Climate Change in Philistia (the Southern Coastal Plain and Shephelah), Israel. Journal of Mediterranean Ecology 13, 2015, 57–75

Peet 1980

R. K. Peet, Ordination as a tool for analyzing complex data sets, Vegetation 42, 171–174

Ponikarov et al. 1967

V. Ponikarov – V. G. Kazmin – I. A. Mikhailov – A. V. Razvaliyaev – V. A. Krasheninnikov – V. V. Kozlov – E. D. Soulidi-Kondratiyev – K. Y. Mikhailov – V. V. Kulakov – V. A. Faradzhev – K. M. Mirzayev, The Geology of Syria. Explanatory Notes of the Geological Map of Syria, scale 1:500,000. Part I: Stratigraphy, Igneous Rocks and Tectonics (Moscow 1967)

Porath 1984

J. Porath, Lime plaster in Aqueducts. A new chronological indicator, Mitteilungen des Leichtweiss-Instituts für Wasserbau 82, 1984, 1–16

Post 1933

G. E. Post, Flora of Syria, Palestine and Sinai. Vol. II, revised and enlarged by J. E. Dinsmore (Beirut 1933) 788

Prescott – Hutton 1994

J. R. Prescott – J. T. Hutton, Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating. Large Depths and Long-Term Time Variations, Radiation Measurements 23, 1994, 497–500

Preusser et al. 2008

F. Preusser – D. Degering – M. Fuchs – A. Hilgers – A. Kadereit – N. Klasen – M. Krbetschek – D. Richter – J. Q. G. Spence, Luminescence dating. Basics, methods and applications. Eiszeitalter und Gegenwart Quarternary Science Journal 57, 1–2, 2008, 95–149

Quézel et al. 1973

P. Quézel – M. Barbero – A. Pamukcuoglu, Contribution à l'étude phytosociologique et bioclimatique de quelques groupements forestiers du Taurus. Feddes Repertorium 84, 1973, 185–292

Rabinovitch-Vin 1983

A. Rabinovitch-Vin, Influence of Nutrients on the Composition and Distribution of Plant Communities in Mediterranean-Type Ecosystems of Israel, in: F. J. Kruger – D. T. Mitchell – J. U. M. Jarvis (eds.), Mediterranean-Type Ecosystems. Ecological Studies (Analysis and Synthesis) 43 (Berlin 1983)

Rollefson 1982

G. O. Rollefson, Excavations at PPNB, Ain Ghazal. AAJ 26, 1982, 411–414

Santisteban et al. 2006

L. M. de Santisteban – J. Casalí – J. J. López, Assessing soil erosion rates in cultivated areas of Navarre (Spain). Earth Surface Processes and Landforms, 31, 487–506

Schumacher 1889

G. Schumacher, Across the Jordan (London 1889)

Sharkas 1994

O. A. Sharkas, Boden- und Vegetationsdegradierung in Nordjordanien (Soil and vegetation degredation in North of Jordan) (Ph.D. dissertation, University of Bayreuth 1994)

Shmida – Aronson 1986

A. Shmida – A. Aronson, The Sudanian elements in the flora of Israel, Annals of the Missouri Botanical Garden 73, 1986, 1–28

Siebert 2005

C. Siebert, Saisonale chemische Variationen des See Genezareth, seiner Zuflüsse und deren Ursachen (Dissertation Freie Universität Berlin 2005)

Semmel 1993

A. Semmel, Grundzüge der Bodenkunde ³(Stuttgart 1993)

Šmilauer - Lepš 2014

P. Šmilauer – J. Lepš, Multivariate analysis of ecological data using CANOCO 5 (Cambridge 2014)

Soennecken et al. 2017

K. Soennecken – L. Olsvig-Whittaker – P. Leiverkus, – A. Shmida, Landscape Archaeology in the Wādī al-'Arab Region, Journal of Landscape Ecology 10, 3, 2017, 100–108.

Stroosnijder 2005

L. Stroosnijder, Measurement of erosion: Is it possible?, Catena 64, 2005, 162–173

Tracey 1994

R. Tracey, Syria, in: J. M. Scott – D. W. J. Gill – C. Gempf – B. W. Winter (eds.), The Book of Acts in its Graeco-Roman Setting (Grand Rapids, Michigan 1994) 223–278

Tribolo et al. 2001

C. N. Tribolo – N. Mercier – H. Valladas, Alpha sensitivity determination in quartzite using an OSL single aliquot procedure 19, 2001, 47–50

Tristram 1873

H. B. Tristram, The Land of Moab. Travels and Discoveries on the East side of the Dead Sea and Jordan (London 1873)

Vandaele et al. 1996

K. Vandaele – J. Poesen – J. R. Marques da Silva – P. P. J. Desmet, Rates and predictability of ephemeral gully erosion in two contrasting environments, Géomorphologie: relief, processus, environnement 2, 2, 1996, 83–95

Vieweger 2012

D. Vieweger, Archäologie der biblischen Welt (Gütersloh 2012)

Vieweger – Häser 2010

D. Vieweger – J. Häser, Neue Ausgrabungen geben Auskunft über das Handwerk im biblischen Altertum, Welt und Umwelt der Bibel 3, 2010, 68–69

Vieweger - Häser 2013

D. Vieweger – J. Häser, Tall Zirā'a. 5000 Jahre Siedlungsgeschichte auf einem Siedlungshügel (Gütersloh 2013)

Vieweger - Häser 2017

D. Vieweger – J. Häser (eds.), Tall Zirā'a, Vol. 1 (Gütersloh 2017). Available online at http://www. tallziraa.de/data-file-bai/docs/final_publication/V-I_1._The_Gadara_Region_Project.pdf

Wisheu et al. 2000

I. C. Wisheu – M. L. Rosenzweig – L. Olsvig-Whittaker – A. Shmida, What makes nutrient-poor Mediterranean heathlands so rich in plant diversity? Evolutionary Ecology Research 3, 2000, 935–955 WRB 2007 World Reference Base for Soil Classification

Zohary 1962

M. Zohary, Plant life of Palestine (London 1962)

Zohary 1973

M. Zohary, Geobotanical foundation of the Middle-East (Stuttgart 1973)